Skip to main content
Log in

Ghrelin prevents lethality in a rat endotoxemic model through central effects on the vagal pathway and adenosine A2B signaling

Brain ghrelin and anti-septic action

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Accumulating evidence suggest that ghrelin plays a role as an antiseptic peptide. The present study aimed to clarify whether the brain may be implicated ghrelin’s antiseptic action. We examined the effect of brain ghrelin on survival in a novel endotoxemic model achieved by treating rats with lipopolysaccharide (LPS) and colchicine. The observation of survival stopped three days after chemicals’ injection or at death. Intracisternal ghrelin dose-dependently reduced lethality in the endotoxemic model; meanwhile, neither intraperitoneal injection of ghrelin nor intracisternal des-acyl-ghrelin injection affected the mortality rate. The brain ghrelin-induced lethality reduction was significantly blocked by surgical vagotomy. Moreover, intracisternal injection of a ghrelin receptor antagonist blocked the improved survival achieved by intracisternal ghrelin injection or intravenous 2-deoxy-d-glucose administration. Intracisternal injection of an adenosine A2B receptor agonist reduced the lethality and the ghrelin-induced improvement of survival was blocked by adenosine A2B receptor antagonist. I addition, intracisternal ghrelin significantly blocked the colonic hyperpermeability produced by LPS and colchicine. These results suggest that ghrelin acts centrally to reduce endotoxemic lethality. Accordingly, activation of the vagal pathway and adenosine A2B receptors in the brain may be implicated in the ghrelin-induced increased survival. Since the efferent vagus nerve mediates anti-inflammatory mechanisms, we speculate that the vagal cholinergic anti-inflammatory pathway is implicated in the decreased septic lethality caused by brain ghrelin.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Some data may not be made available because of privacy or ethical restrictions.

References

  1. Angus DC, van der Poll T (2013) Severe sepsis and septic shock. N Engl J Med 369(9):840–851. https://doi.org/10.1056/NEJMra1208623

    Article  CAS  PubMed  Google Scholar 

  2. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 405(6785):458–462. https://doi.org/10.1038/35013070

    Article  CAS  PubMed  Google Scholar 

  3. Camici M, Garcia-Gil M, Tozzi MG (2018) The Inside Story of Adenosine. Int J Mol Sci 19(3):784. https://doi.org/10.3390/ijms19030784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cecconi M, Evans L, Levy M, Rhodes A (2018) Sepsis and septic shock. Lancet 392(10141):75–87. https://doi.org/10.1016/s0140-6736(18)30696-2

    Article  PubMed  Google Scholar 

  5. Cowley MA, Smith RG, Diano S, Tschöp M, Pronchuk N, Grove KL et al (2003) The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 37(4):649–661. https://doi.org/10.1016/s0896-6273(03)00063-1

    Article  CAS  PubMed  Google Scholar 

  6. Dai C, Guandalini S, Zhao DH, Jiang M (2012) Antinociceptive effect of VSL#3 on visceral hypersensitivity in a rat model of irritable bowel syndrome: a possible action through nitric oxide pathway and enhance barrier function. Mol Cell Biochem 362(1-2):43–53. https://doi.org/10.1007/s11010-011-1126-5

    Article  CAS  PubMed  Google Scholar 

  7. De-Souza DA, Greene LJ (2005) Intestinal permeability and systemic infections in critically ill patients: effect of glutamine. Crit Care Med 33(5):1125–1135. https://doi.org/10.1097/01.ccm.0000162680.52397.97

    Article  PubMed  Google Scholar 

  8. Dixit VD, Schaffer EM, Pyle RS, Collins GD, Sakthivel SK, Palaniappan R et al (2004) Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J Clin Invest 114(1):57–66. https://doi.org/10.1172/jci21134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52(4):595–638

    CAS  PubMed  Google Scholar 

  10. Gilg S, Lutz TA (2006) The orexigenic effect of peripheral ghrelin differs between rats of different age and with different baseline food intake, and it may in part be mediated by the area postrema. Physiol Behav 87(2):353–359. https://doi.org/10.1016/j.physbeh.2005.10.015

    Article  CAS  PubMed  Google Scholar 

  11. Goyal RK, Guo Y, Mashimo H (2019) Advances in the physiology of gastric emptying. Neurogastroenterol Motil 31(4):e13546. https://doi.org/10.1111/nmo.13546

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hosoda H, Kojima M, Matsuo H, Kangawa K (2000) Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. Biochem Biophys Res Commun 279(3):909–913. https://doi.org/10.1006/bbrc.2000.4039

    Article  CAS  PubMed  Google Scholar 

  13. Igarashi S, Nozu T, Ishioh M, Kumei S, Saito T, Toki Y et al (2020) Centrally administered orexin prevents lipopolysaccharide and colchicine induced lethality via the vagal cholinergic pathway in a sepsis model in rats. Biochem Pharmacol 182:114262. https://doi.org/10.1016/j.bcp.2020.114262

    Article  CAS  PubMed  Google Scholar 

  14. Ishioh M, Nozu T, Igarashi S, Tanabe H, Kumei S, Ohhira M et al (2020) Ghrelin acts in the brain to block colonic hyperpermeability in response to lipopolysaccharide through the vagus nerve. Neuropharmacology. 173:108116. https://doi.org/10.1016/j.neuropharm.2020.108116

    Article  CAS  PubMed  Google Scholar 

  15. Ishioh M, Nozu T, Igarashi S, Tanabe H, Kumei S, Ohhira M et al (2021) Activation of central adenosine A2B receptors mediate brain ghrelin-induced improvement of intestinal barrier function through the vagus nerve in rats. Exp Neurol 341:113708. https://doi.org/10.1016/j.expneurol.2021.113708

    Article  CAS  PubMed  Google Scholar 

  16. Kanda Y (2013) Investigation of the freely available easy-to-use software 'EZR' for medical statistics. Bone Marrow Transplant 48(3):452–458. https://doi.org/10.1038/bmt.2012.244

    Article  CAS  PubMed  Google Scholar 

  17. Kitajima S, Takuma S, Morimoto M (1999) Changes in colonic mucosal permeability in mouse colitis induced with dextran sulfate sodium. Exp Anim 48(3):137–143. https://doi.org/10.1538/expanim.48.137

    Article  CAS  PubMed  Google Scholar 

  18. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 402(6762):656–660. https://doi.org/10.1038/45230

    Article  CAS  PubMed  Google Scholar 

  19. Korbonits M, Goldstone AP, Gueorguiev M, Grossman AB (2004) Ghrelin--a hormone with multiple functions. Front Neuroendocrinol 25(1):27–68. https://doi.org/10.1016/j.yfrne.2004.03.002

    Article  CAS  PubMed  Google Scholar 

  20. Lange S, Delbro DS, Jennische E (1994) Evans blue permeation of intestinal mucosa in the rat. Scand J Gastroenterol 29(1):38–46. https://doi.org/10.3109/00365529409090435

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Wu X, Zhao Y, Chen S, Owyang C (2006) Ghrelin acts on the dorsal vagal complex to stimulate pancreatic protein secretion. Am J Physiol Gastrointest Liver Physiol 290(6):G1350–G1358. https://doi.org/10.1152/ajpgi.00493.2005

    Article  CAS  PubMed  Google Scholar 

  22. Mathur N, Mehdi SF, Anipindi M, Aziz M, Khan SA, Kondakindi H et al (2020) Ghrelin as an Anti-Sepsis Peptide: Review. Front Immunol 11:610363. https://doi.org/10.3389/fimmu.2020.610363

    Article  CAS  PubMed  Google Scholar 

  23. Nikitopoulou I, Kampisiouli E, Jahaj E, Vassiliou AG, Dimopoulou I, Mastora Z et al (2020) Ghrelin alterations during experimental and human sepsis. Cytokine. 127:154937. https://doi.org/10.1016/j.cyto.2019.154937

    Article  CAS  PubMed  Google Scholar 

  24. Nozu T, Miyagishi S, Kumei S, Nozu R, Takakusaki K, Okumura T (2018a) Glucagon-like peptide-1 analog, liraglutide, improves visceral sensation and gut permeability in rats. J Gastroenterol Hepatol 33(1):232–239. https://doi.org/10.1111/jgh.13808

    Article  CAS  PubMed  Google Scholar 

  25. Nozu T, Miyagishi S, Kumei S, Nozu R, Takakusaki K, Okumura T (2018c) Lovastatin inhibits visceral allodynia and increased colonic permeability induced by lipopolysaccharide or repeated water avoidance stress in rats. Eur J Pharmacol 818:228–234. https://doi.org/10.1016/j.ejphar.2017.10.056

    Article  CAS  PubMed  Google Scholar 

  26. Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T (2018b) Altered colonic sensory and barrier functions by CRF: roles of TLR4 and IL-1. J Endocrinol 239(2):241–252. https://doi.org/10.1530/joe-18-0441

    Article  CAS  PubMed  Google Scholar 

  27. Ogawa Y, Irukayama-Tomobe Y, Murakoshi N, Kiyama M, Ishikawa Y, Hosokawa N et al (2016) Peripherally administered orexin improves survival of mice with endotoxin shock. Elife. 5:e21055. https://doi.org/10.7554/eLife.21055

    Article  PubMed  PubMed Central  Google Scholar 

  28. Okumura T, Fukagawa K, Tso P, Taylor IL, Pappas TN (1994) Intracisternal injection of apolipoprotein A-IV inhibits gastric secretion in pylorus-ligated conscious rats. Gastroenterology. 107(6):1861–1864. https://doi.org/10.1016/0016-5085(94)90833-8

    Article  CAS  PubMed  Google Scholar 

  29. Okumura T, Namiki M (1990) Vagal motor neurons innervating the stomach are site-specifically organized in the dorsal motor nucleus of the vagus nerve in rats. J Auton Nerv Syst 29(2):157–162. https://doi.org/10.1016/0165-1838(90)90181-h

    Article  CAS  PubMed  Google Scholar 

  30. Okumura T, Nozu T, Ishioh M, Igarashi S, Kumei S, Ohhira M (2020) Brain orexin improves intestinal barrier function via the vagal cholinergic pathway. Neurosci Lett 714:134592. https://doi.org/10.1016/j.neulet.2019.134592

    Article  CAS  PubMed  Google Scholar 

  31. Pavlov VA, Tracey KJ (2004) Neural regulators of innate immune responses and inflammation. Cell Mol Life Sci 61(18):2322–2331. https://doi.org/10.1007/s00018-004-4102-3

    Article  CAS  PubMed  Google Scholar 

  32. Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ (2003) The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med 9(5-8):125–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sato N, Kanai S, Takano S, Kurosawa M, Funakoshi A, Miyasaka K (2003) Central administration of ghrelin stimulates pancreatic exocrine secretion via the vagus in conscious rats. Jpn J Physiol 53(6):443–449. https://doi.org/10.2170/jjphysiol.53.443

    Article  CAS  PubMed  Google Scholar 

  34. Smart D, Sabido-David C, Brough SJ, Jewitt F, Johns A, Porter RA et al (2001) SB-334867-A: the first selective orexin-1 receptor antagonist. Br J Pharmacol 132(6):1179–1182. https://doi.org/10.1038/sj.bjp.0703953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Swartz EM, Browning KN, Travagli RA, Holmes GM (2014) Ghrelin increases vagally mediated gastric activity by central sites of action. Neurogastroenterol Motil 26(2):272–282. https://doi.org/10.1111/nmo.12261

    Article  CAS  PubMed  Google Scholar 

  36. Takahashi N, Okumura T, Yamada H, Kohgo Y (1999) Stimulation of gastric acid secretion by centrally administered orexin-A in conscious rats. Biochem Biophys Res Commun 254(3):623–627. https://doi.org/10.1006/bbrc.1998.9994

    Article  CAS  PubMed  Google Scholar 

  37. Toshinai K, Yamaguchi H, Sun Y, Smith RG, Yamanaka A, Sakurai T et al (2006) Des-acyl ghrelin induces food intake by a mechanism independent of the growth hormone secretagogue receptor. Endocrinology. 147(5):2306–2314. https://doi.org/10.1210/en.2005-1357

    Article  CAS  PubMed  Google Scholar 

  38. Tracey KJ (2002) The inflammatory reflex. Nature. 420(6917):853–859. https://doi.org/10.1038/nature01321

    Article  CAS  PubMed  Google Scholar 

  39. Tracey KJ (2007) Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest 117(2):289–296. https://doi.org/10.1172/JCI30555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Traebert M, Riediger T, Whitebread S, Scharrer E, Schmid HA (2002) Ghrelin acts on leptin-responsive neurones in the rat arcuate nucleus. J Neuroendocrinol 14(7):580–586. https://doi.org/10.1046/j.1365-2826.2002.00810.x

    Article  CAS  PubMed  Google Scholar 

  41. Ukena SN, Singh A, Dringenberg U, Engelhardt R, Seidler U, Hansen W et al (2007) Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PloS One 2(12):e1308. https://doi.org/10.1371/journal.pone.0001308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang W, Bansal S, Falk S, Ljubanovic D, Schrier R (2009) Ghrelin protects mice against endotoxemia-induced acute kidney injury. Am J Physiol Renal Physiol 297(4):F1032–F1037. https://doi.org/10.1152/ajprenal.00044.2009

    Article  CAS  PubMed  Google Scholar 

  43. Ziegler TR, Smith RJ, O'Dwyer ST, Demling RH, Wilmore DW (1988) Increased intestinal permeability associated with infection in burn patients. Arch Surg 123(11):1313–1319. https://doi.org/10.1001/archsurg.1988.01400350027003

    Article  CAS  PubMed  Google Scholar 

  44. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK (2006) Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 494(3):528–548. https://doi.org/10.1002/cne.20823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by grants-in-aid from the Ministry of Education, Science, Sports and Culture of Japan [19K08410 (TO) and 18K07896 (TN)].

Author information

Authors and Affiliations

Authors

Contributions

SI: Conceptualization, Formal analysis, Investigation, Methodology, Writing-original draft, TN: Conceptualization, Formal analysis, Investigation, Methodology, Writing-original draft, MI: Formal analysis, Investigation, Methodology, TF: Formal analysis, Investigation, CS: Formal analysis, Investigation, TS: Formal analysis, Investigation, MH: Formal analysis, Investigation, YT: Formal analysis, Investigation, MY: Formal analysis, Investigation, MS: Formal analysis, Investigation, HT: Formal analysis, Investigation, Methodology, TO: Conceptualization, Formal analysis, Investigation, Methodology, Writing-original draft. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Toshikatsu Okumura.

Ethics declarations

Competing interest

The authors declare no competing financial interests.

Ethical considerations

Approval was obtained from the Research and Development and Animal Care committees at Asahikawa Medical University (No. 13030) for all of the experiments conducted in this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

• Ghrelin acts centrally to improve survival in a rat endotoxemic lethality model.

• Improvement of survival by ghrelin was not observed in vagotomized rats.

• Ghrelin-induced improvement was blocked by adenosine A2B receptor antagonist.

• Ghrelin improves survival via the vagal pathway and adenosine signal in sepsis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Igarashi, S., Nozu, T., Ishioh, M. et al. Ghrelin prevents lethality in a rat endotoxemic model through central effects on the vagal pathway and adenosine A2B signaling. J Physiol Biochem 79, 625–634 (2023). https://doi.org/10.1007/s13105-023-00962-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-023-00962-4

Keywords

Navigation