Skip to main content

Advertisement

Log in

Rutin ameliorates inflammatory pain by inhibiting P2X7 receptor in mast cells

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Rutin is a natural anti-inflammatory ingredient widely found in medicinal plants. Studies have shown that rutin inhibits mast cell degranulation and the release of inflammatory mediators. Mast cell P2X7 receptor mediates mast cell degranulation and serves as a therapeutic target for inflammatory pain. Herein, the aim of this study was to investigate whether the anti-inflammatory mechanism of rutin is related to the mast cell P2X7 receptor. Our results showed that rutin could inhibit [Ca2+]i elevation induced by 5 mM ATP or 30 μM BZATP in a concentration-dependent manner in mouse peritoneal mast cells. Rutin also suppressed the inward current mediated by P2X7 receptor. In vivo, rutin could significantly inhibit the mechanical hypersensitivity induced by 100 mM ATP that is associated with P2X7 receptor in mast cells. Moreover, molecular docking revealed the high affinity between rutin and the P2X7 receptor crystal structure. Collectively, this study demonstrated that rutin attenuated inflammatory pain by inhibiting the activity of P2X7 receptor in mast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ganeshpurkar A, Saluja AK (2017) The pharmacological potential of rutin. Saudi Pharm J 25:149–164

    Article  PubMed  Google Scholar 

  2. Arowoogun J, Akanni OO, Adefisan AO, Owumi SE, Tijani AS, Adaramoye OA (2021) Rutin ameliorates copper sulfate-induced brain damage via antioxidative and anti-inflammatory activities in rats. J Biochem Mol Toxicol 35:e22623

    Article  CAS  PubMed  Google Scholar 

  3. Teixeira FM, Coelho MN, Jose-Chagas F, Malvar D, Kanashiro A, Cunha FQ, Machado VM, Da CPA, Vanderlinde FA, Costa SS (2020) Oral treatments with a flavonoid-enriched fraction from Cecropia hololeuca and with rutin reduce articular pain and inflammation in murine zymosan-induced arthritis. J Ethnopharmacol 260:112841

    Article  CAS  PubMed  Google Scholar 

  4. Han Y (2009) Rutin has therapeutic effect on septic arthritis caused by Candida albicans. Int Immunopharmacol 9:207–211

    Article  CAS  PubMed  Google Scholar 

  5. Habtemariam S, Belai A (2018) Natural therapies of the inflammatory bowel disease: the case of rutin and its aglycone, quercetin. Mini Rev Med Chem 18:234–243

    Article  CAS  PubMed  Google Scholar 

  6. Chen X, Yu M, Xu W, Zou L, Ye J, Liu Y, Xiao Y, Luo J (2021) Rutin inhibited the advanced glycation end products-stimulated inflammatory response and extra-cellular matrix degeneration via targeting TRAF-6 and BCL-2 proteins in mouse model of osteoarthritis. Aging (Albany NY) 13:22134–22147

    Article  CAS  PubMed  Google Scholar 

  7. Liu S, Adewole D, Yu L, Sid V, Wang B, Karmin O, Yang C (2019) Rutin attenuates inflammatory responses induced by lipopolysaccharide in an in vitro mouse muscle cell (C2C12) model. Poult Sci 98:2756–2764

    Article  CAS  PubMed  Google Scholar 

  8. Yoo H, Ku SK, Baek YD, Bae JS (2014) Anti-inflammatory effects of rutin on HMGB1-induced inflammatory responses in vitro and in vivo. Inflamm Res 63:197–206

    Article  CAS  PubMed  Google Scholar 

  9. Selloum L, Bouriche H, Tigrine C, Boudoukha C (2003) Anti-inflammatory effect of rutin on rat paw oedema, and on neutrophils chemotaxis and degranulation. Exp Toxicol Pathol 54:313–318

    Article  CAS  PubMed  Google Scholar 

  10. Fikry EM, Hasan WA, Mohamed EG (2018) Rutin and meloxicam attenuate paw inflammation in mice: affecting sorbitol dehydrogenase activity. J Biochem Mol Toxicol 32:22029

  11. Choi SS, Park HR, Lee KA (2021) A comparative study of rutin and rutin glycoside: antioxidant activity, anti-inflammatory effect, effect on platelet aggregation and blood coagulation. Antioxidants (Basel) 10:1696

  12. Dirckx M, Groeneweg G, van Daele PL, Stronks DL, Huygen FJ (2013) Mast cells: a new target in the treatment of complex regional pain syndrome? Pain Pract 13:599–603

    Article  PubMed  Google Scholar 

  13. Santos FM, Malafaia CA, Simas D, Paulino AB, Muzitano MF, Simas NK, Cruz DE, Amaral A, Leal I (2020) Phenolic compounds from Tocoyena bullata mart (Rubiaceae) with inhibitory activity in mast cells degranulation. Nat Prod Res 34:3295–3298

    Article  CAS  PubMed  Google Scholar 

  14. Borissova P, Valcheva S, Belcheva A (1994) Antiinflammatory effect of flavonoids in the natural juice from Aronia melanocarpa, rutin and rutin-magnesium complex on an experimental model of inflammation induced by histamine and serotonin. Acta Physiol Pharmacol Bulg 20:25–30

    CAS  PubMed  Google Scholar 

  15. Chen S, Gong J, Liu F, Mohammed U (2000) Naturally occurring polyphenolic antioxidants modulate IgE-mediated mast cell activation. Immunology 100:471–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Choi JK, Kim SH (2013) Rutin suppresses atopic dermatitis and allergic contact dermatitis. Exp Biol Med (Maywood) 238:410–417

    Article  PubMed  Google Scholar 

  17. Jeong HJ, Yoou MS, Han NR, Hwang SY, Yoon KW, Kim HM (2018) The new therapeutic herbal drug HM0601 and its bioactive compound rutin exert potent antiproliferative activities in mast cells. Fundam Clin Pharmacol 32:279–287

    Article  CAS  PubMed  Google Scholar 

  18. Park HH, Lee S, Son HY, Park SB, Kim MS, Choi EJ, Singh TS, Ha JH, Lee MG, Kim JE, Hyun MC, Kwon TK, Kim YH, Kim SH (2008) Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells. Arch Pharm Res 31:1303–1311

    Article  CAS  PubMed  Google Scholar 

  19. Green DP, Limjunyawong N, Gour N, Pundir P, Dong X (2019) A mast-cell-specific receptor mediates neurogenic inflammation and pain. Neuron 101:412–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang Y, Ye F, Du Y, Zong Y, Tang Z (2021) P2X7R in mast cells is a potential target for salicylic acid and aspirin in treatment of inflammatory pain. J Inflamm Res 14:2913–2931

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kurashima Y, Amiya T, Nochi T, Fujisawa K, Haraguchi T, Iba H, Tsutsui H, Sato S, Nakajima S, Iijima H, Kubo M, Kunisawa J, Kiyono H (2012) Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nat Commun 3:1034

    Article  PubMed  Google Scholar 

  22. McNeil BD, Pundir P, Meeker S, Han L, Undem BJ, Kulka M, Dong X (2015) Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 519:237–241

    Article  CAS  PubMed  Google Scholar 

  23. Karasawa A, Kawate T (2016) Structural basis for subtype-specific inhibition of the P2X7 receptor. eLife 5:e22153

  24. He Y, Franchi L, Nunez G (2013) TLR agonists stimulate Nlrp3-dependent IL-1beta production independently of the purinergic P2X7 receptor in dendritic cells and in vivo. J Immunol 190:334–339

    Article  CAS  PubMed  Google Scholar 

  25. Hu SQ, Hu JL, Zou FL, Liu JP, Luo HL, Hu DX, Wu LD, Zhang WJ (2022) P2X7 receptor in inflammation and pain. Brain Res Bull 187:199–209

    Article  PubMed  Google Scholar 

  26. Ren K, Torres R (2009) Role of interleukin-1beta during pain and inflammation. Brain Res Rev 60:57–64

    Article  CAS  PubMed  Google Scholar 

  27. Mai L, Liu Q, Huang F, He H, Fan W (2021) Involvement of mast cells in the pathophysiology of pain. Front Cell Neurosci 15:665066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meloto CB, Ingelmo P, Perez EV, Pitt R, Gonzalez CV, Mohamed N, Sotocinal SG, Bourassa V, Lima LV, Ribeiro-da-Silva A, Mogil JS, Diatchenko L (2021) Mast cell stabilizer ketotifen fumarate reverses inflammatory but not neuropathic-induced mechanical pain in mice. Pain Rep 6:e902

    Article  PubMed  PubMed Central  Google Scholar 

  29. Traina G (2019) Mast cells in gut and brain and their potential role as an emerging therapeutic target for neural diseases. Front Cell Neurosci 13:345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gupta K, Harvima IT (2018) Mast cell-neural interactions contribute to pain and itch. Immunol Rev 282:168–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Theoharides TC, Tsilioni I, Bawazeer M (2019) Mast cells, neuroinflammation and pain in fibromyalgia syndrome. Front Cell Neurosci 13:353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Honore P, Donnelly-Roberts D, Namovic MT, Hsieh G, Zhu CZ, Mikusa JP, Hernandez G, Zhong C, Gauvin DM, Chandran P, Harris R, Medrano AP, Carroll W, Marsh K, Sullivan JP, Faltynek CR, Jarvis MF (2006) A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J Pharmacol Exp ther 319:1376–1385

    Article  CAS  PubMed  Google Scholar 

  33. Teixeira JM, Oliveira MC, Parada CA, Tambeli CH (2010) Peripheral mechanisms underlying the essential role of P2X7 receptors in the development of inflammatory hyperalgesia. Eur J Pharmacol 644:55–60

    Article  CAS  PubMed  Google Scholar 

  34. Michel AD, Chambers LJ, Clay WC, Condreay JP, Walter DS, Chessell IP (2007) Direct labelling of the human P2X7 receptor and identification of positive and negative cooperativity of binding. Br J Pharmacol 151:103–114

    Article  CAS  PubMed  Google Scholar 

  35. Allsopp RC, Dayl S, Schmid R, Evans RJ (2017) Unique residues in the ATP gated human P2X7 receptor define a novel allosteric binding pocket for the selective antagonist AZ10606120. Sci Rep 7:725

    Article  PubMed  PubMed Central  Google Scholar 

  36. Al-Majmaie S, Nahar L, Rahman MM, Nath S, Saha P, Talukdar AD, Sharples GP, Sarker SD (2021) Anti-MRSA constituents from Ruta chalepensis (Rutaceae) grown in Iraq, and in silico studies on two of most active compounds, chalepensin and 6-hydroxy-rutin 3',7-dimethyl ether. MOLECULES 26:1114

  37. Jaffal SM, Oran SA, Alsalem M (2020) Anti-nociceptive effect of Arbutus andrachne L. methanolic leaf extract mediated by CB1, TRPV1 and PPARs in mouse pain models. Inflammopharmacology 28:1567–1577

    Article  CAS  PubMed  Google Scholar 

  38. Alonso-Castro AJ, Rangel-Velazquez JE, Isiordia-Espinoza MA, Villanueva-Solis LE, Aragon-Martinez OH, Zapata-Morales JR (2017) Synergism between naproxen and rutin in a mouse model of visceral pain. Drug Dev Res 78:184–188

    Article  CAS  PubMed  Google Scholar 

  39. Carvalho TT, Mizokami SS, Ferraz CR, Manchope MF, Borghi SM, Fattori V, Calixto-Campos C, Camilios-Neto D, Casagrande R, Verri WJ (2019) The granulopoietic cytokine granulocyte colony-stimulating factor (G-CSF) induces pain: analgesia by rutin. Inflammopharmacology 27:1285–1296

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all participants for their cheerful support.

Funding

The study was financially supported by the National Natural Science Foundation of China (No. 31771163), the Key Project of Jiangsu Administration of Traditional Chinese Medicine (No. ZD202001), and Innovative Project of postgraduate education in Jiangsu Province (No. KYCX21_1745).

Author information

Authors and Affiliations

Authors

Contributions

Fan Ye: methodology, performed the experiment, writing—original draft. Material preparation was performed by Jiahua Lv, Xinyu Shen, and Jian Zhang. Yingxin Zong, Chan Zhu, Yan Yang, and Keke Jia collected and analyzed the data. Yucui Jiang: methodology, validation, supervision. Zongxiang Tang: project administration, funding acquisition. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding authors

Correspondence to Yucui Jiang or Zongxiang Tang.

Ethics declarations

Ethics approval

The Experimental Animal Ethics Committee of Nanjing University of Chinese Medicine approved the development of this animal experiment. All animal experiments conformed to the Guidelines for the Care and Use of Laboratory Animals and were approved by the Animal Ethics Committee of Nanjing University of Chinese Medicine (Ethics license ACU190601, 20,190,605).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• Rutin inhibited intracellular calcium mobilization mediated by the P2X7 receptor.

• Rutin inhibited currents mediated by the P2X7 receptor.

• Rutin ameliorated inflammation pain mediated by the P2X7 receptor in mast cells.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1332 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, F., Lv, J., Shen, X. et al. Rutin ameliorates inflammatory pain by inhibiting P2X7 receptor in mast cells. J Physiol Biochem 79, 287–295 (2023). https://doi.org/10.1007/s13105-022-00938-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-022-00938-w

Keywords

Navigation