Skip to main content

Advertisement

Log in

Dopaminergic and adrenergic receptors synergistically stimulate browning in 3T3-L1 white adipocytes

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The browning of white adipose tissue (WAT) has attracted considerable attention in the scientific community as a popular strategy for enhancing energy expenditure to combat obesity. As a part of this strategy, β3-adrenergic receptor (β3-AR) is the most widely studied receptor that mediates thermogenesis. Parenthetically, further studies in search for additional receptors expressed in adipocytes that can mediate thermogenesis has been appearing, and this paper reports that dopaminergic receptor 1 (DRD1) and β3-AR synergistically stimulate browning in 3T3-L1 white adipocytes. qRT-PCR and immunoblot analysis methods were applied to evaluate the effects of DRD1 on the target proteins downstream of β3-AR and other markers involved in lipid metabolism, mitochondrial biogenesis, and browning events. These results show that DRD1 is expressed in epididymal WAT (eWAT), brown adipose tissue (BAT), and inguinal WAT (iWAT) of normal and high-fat-fed mice, and a deficiency of DRD1 downregulates the expression of brown adipocyte-specific proteins. Silencing of DRD1 affected lipid metabolic activity in 3T3-L1 adipocytes by reducing mitochondrial biogenesis as well as levels of lipolytic and fat oxidative marker proteins in a similar pattern to β3-AR. Moreover, mechanistic studies showed that the depletion of DRD1 downregulates β3-AR and its downstream molecules, suggesting both receptors might synergistically stimulate browning. Parallel to the UCP1-dependent thermogenesis, the depletion of DRD1 also downregulates the expression of core proteins responsible for UCP1-independent thermogenesis. Overall, DRD1 mediates β3-AR-dependent 3T3-L1 browning and UCP1-independent thermogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACC:

Acyl-CoA carboxylase

ACO:

Acyl-coenzyme A oxidase 1

AMPK:

AMP-activated protein kinase

ATF2:

Activating transcription factor 2

ATGL:

Adipose triglyceride lipase

α1-AR:

Alpha 1 adrenergic receptor

β3-AR:

Beta-3 adrenergic receptor

C/EBP:

CCAAT/enhancer-binding protein/encoding gene

COX-4:

Cyclooxygenase-4

CPT1:

Carnitine palmitoyltransferase 1

CYT-C:

Cytochrome C

CKmt:

Mitochondrial creatine kinase

DRD1:

Dopamine receptor D1

FAS:

Fatty acid synthase

HSL:

Hormone-sensitive lipase

ERK:

Extracellular signal-regulated kinase

PGC-1α:

Peroxisome proliferator-activated receptor-gamma coactivator 1α

p38 MAPK:

P38 mitogen-activated protein kinase

PKA:

Protein kinase A

PPAR:

Peroxisome proliferator-activated receptor

PRDM16:

PR domain containing 16

RyR2:

Ryanodine receptor 2

SERCA:

Sarco/endoplasmic reticulum Ca2+ ATPase

UCP1:

Uncoupling protein 1

References

  1. Aguayo LG, Grossie J (1994) Dopamine inhibits a sustained calcium current through activation of alpha-adrenergic receptors and a GTP-binding protein in adult rat sympathetic neurons. J Pharmacol Exp Ther 269:503–508

    CAS  Google Scholar 

  2. Ahmadian M, Abbott MJ, Tang T, Hudak CS, Kim Y, Bruss M, Hellerstein MK, Lee HY, Samuel VT, Shulman GI, Wang Y (2011) Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab 13:739–748. https://doi.org/10.1016/j.cmet.2011.05.002

    Article  CAS  Google Scholar 

  3. Anfossi G, Massucco P, Mularoni E, Mattiello L, Cavalot F, Burzacca S, Trovati M (1993) Effect of dopamine on adenosine 3’, 5’-cyclic monophosphate levels in human platelets. Gen Pharmacol 24:435–438. https://doi.org/10.1016/0306-3623(93)90329-v

    Article  CAS  Google Scholar 

  4. Baskaran P, Krishnan V, Fettel K, Gao P, Zhu Z, Ren J, Thyagarajan B (2017) TRPV1 activation counters diet-induced obesity through sirtuin-1 activation and PRDM-16 deacetylation in brown adipose tissue. Int J Obes 41:739–749. https://doi.org/10.1038/ijo.2017.16

    Article  CAS  Google Scholar 

  5. Beaulieu JM, Espinoza S, Gainetdinov RR (2015) Dopamine receptors–IUPHAR Review 13. Br J Pharmacol 172:1–23. https://doi.org/10.1111/bph.12906

    Article  CAS  Google Scholar 

  6. Borcherding DC, Hugo ER, Idelman G, De Silva A, Richtand NW, Loftus J, Ben-Jonathan N (2011) Dopamine receptors in human adipocytes: expression and functions. PLoS ONE 6:e25537. https://doi.org/10.1371/journal.pone.0025537

    Article  CAS  Google Scholar 

  7. Christian M (2020) Elucidation of the roles of brown and brite fat genes: GPR120 is a modulator of brown adipose tissue function. Exp Physiol 105:1201–1205. https://doi.org/10.1113/EP087877

    Article  CAS  Google Scholar 

  8. Collins S (2012) β-Adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Front Endocrinol 2:102. https://doi.org/10.3389/fendo.2011.00102

    Article  Google Scholar 

  9. Cornil CA, Ball GF (2008) Interplay among catecholamine systems: dopamine binds to α2-adrenergic receptors in birds and mammals. J Comp Neurol 511:610–627. https://doi.org/10.1002/cne.21861

    Article  CAS  Google Scholar 

  10. Cornil CA, Balthazart J, Motte P, Massotte L, Seutin V (2002) Dopamine activates noradrenergic receptors in the preoptic area. J Neurosci 22:9320–9330. https://doi.org/10.1523/JNEUROSCI.22-21-09320.2002

    Article  CAS  Google Scholar 

  11. Corrêa LH, Heyn GS, Magalhaes KG (2019) The impact of the adipose organ plasticity on inflammation and cancer progression. Cells 8:662. https://doi.org/10.3390/cells8070662

    Article  CAS  Google Scholar 

  12. Evans BA, Merlin J, Bengtsson T, Hutchinson DS (2019) Adrenoceptors in white, brown, and brite adipocytes. Br J Pharmacol 176:2416–2432. https://doi.org/10.1111/bph.14631

    Article  CAS  Google Scholar 

  13. Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T, Chen ZP, O’neill HM, Ford RJ, Palanivel R, O’brien M, Hardie DG (2013) Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med 19:1649–54. https://doi.org/10.1038/nm.3372

    Article  CAS  Google Scholar 

  14. Gnad T, Scheibler S, von Kügelgen I, Scheele C, Kilić A, Glöde A, Hoffmann LS, Reverte-Salisa L, Horn P, Mutlu S, El-Tayeb (2014) Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 516:395–399. https://doi.org/10.1038/nature13816

    Article  CAS  Google Scholar 

  15. Granneman JG, Burnazi M, Zhu Z, Schwamb LA (2003) White adipose tissue contributes to UCP1-independent thermogenesis. Am J Physiol Endocrinol Metab 285:E1230–E1236. https://doi.org/10.1152/ajpendo.00197.2003

    Article  CAS  Google Scholar 

  16. Haddish K, Yun JW (2022) L-Dopa induces brown-like phenotype in 3T3-L1 white adipocytes through activation of dopaminergic and β3-adrernegic receptors. Biotechnol Bioprocess Eng. In press

  17. Huang F, Chen YG (2012) Regulation of TGF-β receptor activity (2019) Cell Biosci 2:1–0. https://doi.org/10.1186/2045-3701-2-9

  18. Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, Homma M, Shinoda K, Chen Y, Lu X, Maretich P, Tajima K (2017) UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med 23:1454–1465. https://doi.org/10.1038/nm.4429

    Article  CAS  Google Scholar 

  19. Jeremic N, Chaturvedi P, Tyagi SC (2017) Browning of white fat: novel insight into factors, mechanisms, and therapeutics. J Cell Physiol 232:61–68. https://doi.org/10.1002/jcp.25450

    Article  CAS  Google Scholar 

  20. Kazak L, Chouchani ET, Lu GZ, Jedrychowski MP, Bare CJ, Mina AI, Kumari M, Zhang S, Vuckovic I, Laznik-Bogoslavski D, Dzeja P (2017) Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity. Cell Metab 26:660–671. https://doi.org/10.1016/j.cmet.2017.08.009

    Article  CAS  Google Scholar 

  21. Komai AM, Musovic S, Peris E, Alrifaiy A, El Hachmane MF, Johansson M, Asterholm IW, Olofsson CS (2016) White adipocyte adiponectin exocytosis is stimulated via β3-adrenergic signaling and activation of Epac1: catecholamine resistance in obesity and type 2 diabetes. Diabetes 65:3301–3313. https://doi.org/10.2337/db15-1597

    Article  CAS  Google Scholar 

  22. Lee TL, Hsu CT, Yen ST, Lai CW, Cheng JT (1998) Activation of β3-adrenoceptors by exogenous dopamine to lower glucose uptake into rat adipocytes. J Auton Nerv Syst 4:86–90

    Article  CAS  Google Scholar 

  23. Leedham JA, Pennefather JN (1986) Selectivities of some agonists acting at alpha 1-and alpha 2-adrenoreceptors in the rat vas deferens. J Auton Pharmacol 6:39–46. https://doi.org/10.1111/j.1474-8673.1986.tb00629.x

    Article  CAS  Google Scholar 

  24. Li J, Choi E, Yu H, Bai XC (2019) Structural basis of the activation of type 1 insulin-like growth factor receptor. Nat Commun 10:1–11. https://doi.org/10.1038/s41467-019-12196-4

    Article  CAS  Google Scholar 

  25. Mattsson CL, Csikasz RI, Chernogubova E, Yamamoto DL, Hogberg HT, Amri EZ, Hutchinson DS, Bengtsson T (2011) β1-Adrenergic receptors increase UCP1 in human MADS brown adipocytes and rescue cold-acclimated β3-adrenergic receptor-knockout mice via nonshivering thermogenesis. Am J Physiol Endocrinol Metab 301:E1108–E1118. https://doi.org/10.1152/ajpendo.00085.2011

    Article  CAS  Google Scholar 

  26. Murakami M, Kamiya Y, Morimura T, Araki O, Imamura M, Ogiwara T, Mizuma H, Mori M (2001) Thyrotropin receptors in brown adipose tissue: thyrotropin stimulates type II iodothyronine deiodinase and uncoupling protein-1 in brown adipocytes. Endocrinology 142:1195–1201. https://doi.org/10.1210/endo.142.3.8012

    Article  CAS  Google Scholar 

  27. Neve KA, Seamans JK, Trantham-Davidson H (2004) Dopamine receptor signaling. Recept Signal Transduct Res 24:165–205. https://doi.org/10.1081/rrs-200029981

    Article  CAS  Google Scholar 

  28. Rajfer SI, Borow KM, Lang RM, Neumann A, Carroll JD (1988) Effects of dopamine on left ventricular afterload and contractile state in heart failure: relation to the activation of beta1-adrenoceptors and dopamine receptors. J Am Coll Cardiol 12:498–506. https://doi.org/10.1016/0735-1097(88)90426-3

    Article  CAS  Google Scholar 

  29. Rey E, Hernández-Dı́az FJ, Abreu P, Alonso R, Tabares L (2001) Dopamine induces intracellular Ca2+ signals mediated by α1B-adrenoceptors in rat pineal cells. Eur J Pharmacol 430:9–17.https://doi.org/10.1016/S0014-2999(01)01250-X

  30. Shi F, Collins S (2017) Second messenger signaling mechanisms of the brown adipocyte thermogenic program: an integrative perspective. Horm Mol Biol Clin Investig 31. https://doi.org/10.1515/hmbci-2017-0062

  31. Tavares G, Marques D, Barra C, Rosendo-Silva D, Costa A, Rodrigues T, Gasparini P, Melo BF, Sacramento JF, Seiça R, Conde SV (2021) Dopamine D2 receptor agonist, bromocriptine, remodels adipose tissue dopaminergic signalling and upregulates catabolic pathways, improving metabolic profile in type 2 diabetes. Mol Metab 51:101241. https://doi.org/10.1016/j.molmet.2021.101241

    Article  CAS  Google Scholar 

  32. Vernochet C, Mourier A, Bezy O, Macotela Y, Boucher J, Rardin MJ, An D, Lee KY, Ilkayeva OR, Zingaretti CM, Emanuelli B (2012) Adipose-specific deletion of TFAM increases mitochondrial oxidation and protects mice against obesity and insulin resistance. Cell Metab 16:765–776. https://doi.org/10.1016/j.cmet.2012.10.016

    Article  CAS  Google Scholar 

  33. Wu X, Chen Y, Li M, Wen Q, Xiao Z, Zhao Y (2021) Dopamine receptor D1 signaling stimulates lipolysis and browning of white adipocytes. Biochemical and biophysical research communications. Biochem Biophys Res Commun 18. https://doi.org/10.1016/j.bbrc.2021.12.040

  34. Wu L, Zhang L, Li B, Jiang H, Duan Y, Xie Z, Shuai L, Li J, Li J (2018) AMP-activated protein kinase (AMPK) regulates energy metabolism through modulating thermogenesis in adipose tissue. Front Physiol 9:122. https://doi.org/10.3389/fphys.2018.00122

    Article  Google Scholar 

  35. Yan Y, Pan J, Chen Y, Xing W, Li Q, Wang D, Zhou X, Xie J, Miao C, Yuan Y, Zeng W (2020) Increased dopamine and its receptor dopamine receptor D1 promote tumor growth in human hepatocellular carcinoma. Cancer Commun 40:694–710. https://doi.org/10.1002/cac2.12103

    Article  Google Scholar 

  36. Yi D, Nguyen HP, Dinh J, Viscarra JA, Xie Y, Lin F, Zhu M, Dempersmier JM, Wang Y, Sul HS (2020) Dot1l interacts with Zc3h10 to activate Ucp1 and other thermogenic genes. Elife 9:e59990. https://doi.org/10.7554/elife.59990

    Article  CAS  Google Scholar 

  37. Young CN, Morgan DA, Butler SD, Rahmouni K, Gurley SB, Coffman TM, Mark AL, Davisson L (2015) Angiotensin type 1a receptors in the forebrain subfornical organ facilitate leptin-induced weight loss through brown adipose tissue thermogenesis. Mol Metab 4:337–343. https://doi.org/10.1016/j.molmet.2015.01.007

    Article  CAS  Google Scholar 

  38. Zhang WP, Ouyang M, Thomas SA (2004) Potency of catecholamines and other L-tyrosine derivatives at the cloned mouse adrenergic receptors. Neuropharmacology 47:438–449. https://doi.org/10.1016/j.neuropharm.2004.04.017

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT, No. 2019R1A2C2002163).

Author information

Authors and Affiliations

Authors

Contributions

Kiros Haddish performed experimental design, conducted experiments, analyzed the data, performed statistical analyses, wrote the manuscript, and conducted a molecular docking study and Jong Won Yun carried out scientific support, wrote the manuscript, critically reviewed the manuscript and experimental design, and approved the manuscript version to be published. All authors read and approved the final manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Jong Won Yun.

Ethics declarations

Ethics approval

All the procedures were performed according to the guidelines approved by the National Institutes of Health. All animal experiments were approved by the Committee for Laboratory Animal Care and Use of Daegu University (DUIACC-2021–001-0310–001).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• Deficiency of DRD1 downregulates the expression of browning markers.

• Silencing of DRD1 reduces lipolytic and mitochondrial biogenesis markers.

• DRD1 and β3-AR synergistically regulate white fat browning.

• Deficiency of DRD1 reduces ATP-dependent thermogenesis.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Supplementary file2 (DOCX 25 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddish, K., Yun, J.W. Dopaminergic and adrenergic receptors synergistically stimulate browning in 3T3-L1 white adipocytes. J Physiol Biochem 79, 117–131 (2023). https://doi.org/10.1007/s13105-022-00928-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-022-00928-y

Keywords

Navigation