Skip to main content
Log in

Oxidative damage and mitochondrial functionality in hearts from KO UCP3 mice housed at thermoneutrality

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The antioxidant role of mitochondrial uncoupling protein 3 (UCP3) is controversial. This work aimed to investigate the effects of UCP3 on the heart of mice housed at thermoneutral temperature, an experimental condition that avoids the effects of thermoregulation on mitochondrial activity and redox homeostasis, preventing the alterations related to these processes from confusing the results caused by the lack of UCP3. WT and KO UCP3 mice were acclimatized at 30 °C for 4 weeks and hearts were used to evaluate metabolic capacity and redox state. Tissue and mitochondrial respiration, the activities of the mitochondrial complexes, and the protein expression of mitochondrial complexes markers furnished information on mitochondrial functionality. The levels of lipid and protein oxidative damage markers, the activity of antioxidant enzymes, the reactive oxygen species levels, and the susceptibility to in vitro Fe-ascorbate-induced oxidative stress furnished information on redox state. UCP3 ablation reduced tissue and mitochondrial respiratory capacities, not affecting the mitochondrial content. In KO UCP3 mice, the mitochondrial complexes activities were lower than in WT without changes in their content. These effects were accompanied by an increase in the level of oxidative stress markers, ROS content, and in vitro susceptibility to oxidative stress, notwithstanding that the activities of antioxidant enzymes were not affected by UCP3 ablation. Such modifications are also associated with enhanced activation/phosphorylation of EIF2α, a marker of integrated stress response and endoplasmic reticulum stress (GRP778 BIP). The lack of UCP3 makes the heart more prone to oxidative insult by reducing oxygen consumption and increasing ROS. Our results demonstrate that UCP3 helps the cell to preserve mitochondrial function by mitigating oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding authors on reasonable request.

Code availability

Not applicable.

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/s0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  2. Barré H, Bailly L, Rouanet JL (1987) Increased oxidative capacity in skeletal muscles from acclimated ducklings: a comparison with rats. Comp Biochem Physiol 88B:519–522. https://doi.org/10.1016/0305-0491(87)90337-3

    Article  Google Scholar 

  3. Brand MD, Pamplona R, Portero-Otín M, Requena JR, Roebuck SJ, Buckingham JA, Clapham JC, Cadenas S (2002) Oxidative damage and phospholipid fatty acyl composition in skeletal muscle mitochondria from mice underexpressing or overexpressing uncoupling protein 3. Biochem J 368: 597–603. https://doi.org/10.1042/BJ20021077

  4. Cadenas S (2018) Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim Biophys Acta Bioenerg 1859:940–950. https://doi.org/10.1016/j.bbabio.2018.05.019

    Article  CAS  PubMed  Google Scholar 

  5. Cadenas S, Echtay KS, Harper JA, Jekabsons MB, Buckingham JA, Grau E, Abuin A, Chapman H, Clapham JC, Brand MD (2002) The basal proton conductance of skeletal muscle mitochondria from transgenic mice overexpressing or lacking uncoupling protein-3. J Biol Chem 277:2773–7778. https://doi.org/10.1074/jbc.M109736200

    Article  CAS  PubMed  Google Scholar 

  6. Cannon B, Nedergaard J (2011) Nonshivering thermogenesis and its adequate measurement in metabolic studies. J Exp Biol 214:242–253. https://doi.org/10.1242/jeb.050989

    Article  PubMed  Google Scholar 

  7. Di Meo S, Venditti P, De Leo T (1996) Tissue protection against oxidative stress. Experientia 52:786–794. https://doi.org/10.1007/BF01923990

    Article  PubMed  Google Scholar 

  8. Dilberger B, Baumanns S, Schmitt F, Schmiedl T, Hardt M, Wenzel U, Eckert GP (2019) Mitochondrial oxidative stress impairs energy metabolism and reduces stress resistance and longevity of C. elegans. Oxid Med Cell Longev. https://doi.org/10.1155/2019/6840540

  9. Driver AS, Kodavanti PRS, Mundy WR (2000) Age-related changes in reactive oxygen species production in rat brain homogenates. Neurotoxicol Teratol 22:175–181. https://doi.org/10.1016/s0892-0362(99)00069-0

    Article  CAS  PubMed  Google Scholar 

  10. Dudele A, Rasmussen GM, Mayntz D, Malte H, Lund S, Wang T (2015) Effects of ambient temperature on glucose tolerance and insulin sensitivity test outcomes in normal and obese C57 male mice. Physiol Rep. https://doi.org/10.14814/phy2.12396

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fan F, Duan Y, Yang F, Trexler C, Wang H, Huang L, Li Y, Tang H, Wang G, Fang X, Liu J, Jia N, Chen J (2020) Ouyang K. Deletion of heat shock protein 60 in adult mouse cardiomyocytes perturbs mitochondrial protein homeostasis and causes heart failure. Cell Death Differ 27:587–600

    Article  CAS  Google Scholar 

  12. Feldmann HM, Golozoubova V, Cannon B, Nedergaard J (2009) UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 9:203–209. https://doi.org/10.1016/j.cmet.2008.12.014

    Article  CAS  PubMed  Google Scholar 

  13. Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–120. https://doi.org/10.1016/s0076-6879(84)05015-1

    Article  PubMed  Google Scholar 

  14. Flohé L (1984) Otting F Superoxide dismutase assays. Methods Enzymol 105:93–104. https://doi.org/10.1016/s0076-6879(84)05013-8

    Article  PubMed  Google Scholar 

  15. Flögel U, Gödecke A, Klotz LO, Schrader J (2004) Role of myoglobin in the antioxidant defense of the heart. FASEB J 18:1156–1158. https://doi.org/10.1096/fj.03-1382fje

    Article  CAS  PubMed  Google Scholar 

  16. Forsström S, Jackson CB, Carroll CJ, Kuronen M, Pirinen E, Pradhan S, Marmyleva A, Auranen M, Kleine IM, Khan NA, Roivainen A, Marjamäki P, Liljenbäck H, Wang L, Battersby BJ, Richter U, Velagapudi V, Nikkanen J, Euro L, Suomalainen A (2019) Fibroblast growth factor 21 drives dynamics of local and systemic stress responses in mitochondrial myopathy with mtDNA deletions. Cell Metab 30:1040–1054

    Article  Google Scholar 

  17. Goglia F, Skulachev VP (2003) A function for novel uncoupling proteins: antioxidant defense of mitochondrial matrix by translocating fatty acid peroxides from the inner to the outer membrane leaflet. FASEB J 17:1585–1591. https://doi.org/10.1096/fj.03-0159hyp

    Article  CAS  PubMed  Google Scholar 

  18. Gong DW, Monemdjou S, Gavrilova O, Leon LR, Marcus-Samuels B, Chou CJ, Everett C, Kozak LP, Li C, Deng C, Harper ME, Reitman ML (2000) Lack of obesity and normal response to fasting and thyroid hormone in mice lacking uncoupling protein-3. J Biol Chem 275:16251–16257. https://doi.org/10.1074/jbc.M910177199

    Article  CAS  PubMed  Google Scholar 

  19. Heath RL, Tappel AL (1976) A new sensitive assay for the measurement of hydroperoxides. Anal Biochem 76:184–191. https://doi.org/10.1016/0003-2697(76)90277-3

    Article  CAS  PubMed  Google Scholar 

  20. Klingenberg M, Slenczka W (1959) Pyridine nucleotide in liver mitochondria. An analysis of their redox relationships. Biochem Z 331:486–517

    CAS  PubMed  Google Scholar 

  21. Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15–18. https://doi.org/10.1016/s0014-5793(97)01159-9

    Article  CAS  PubMed  Google Scholar 

  22. Krauss S, Zhang CY, Lowell BB (2005) The mitochondrial uncoupling protein homologues. Nat Rev Mol Cell Biol 6:248–261. https://doi.org/10.1038/nrm1592

    Article  CAS  PubMed  Google Scholar 

  23. Laszczyca P, Kawka-Serweciňska E, Witas I, Doležych B, Migula P (1995) Iron ascorbate-stimulated lipid peroxidation in vitro. Why is the method controversial? Gen Physiol Biophys 14:3–18

    CAS  PubMed  Google Scholar 

  24. Lombardi A, Busiello RA, Napolitano L, Cioffi F, Moreno M, de Lange P, Silvestri E, Lanni A, Goglia F (2010) UCP3 translocates lipid hydroperoxide and mediates lipid hydroperoxide-dependent mitochondrial uncoupling. J Biol Chem 285:16599–16605. https://doi.org/10.1074/jbc.M110.102699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Melber A, Haynes C (2018) UPRmt regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res 28:281–295

    Article  CAS  Google Scholar 

  26. Musatov A, Robinson NC (2012) Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase. Free Radical Re 46:1313–1326. https://doi.org/10.3109/10715762.2012.717273

    Article  CAS  Google Scholar 

  27. Nabben M, Shabalina IG, Moonen-Kornips E, van Beurden D, Cannon B, Schrauwen P, Nedergaard J, Hoeks J (2011) Uncoupled respiration, ROS production, acute lipotoxicity and oxidative damage in isolated skeletal muscle mitochondria from UCP3-ablated mice. Biochim Biophys Acta 1807. https://doi.org/10.1016/j.bbabio.2011.04.003

  28. Ozcan C, Palmeri M, Horvath TL, Russell KS, Russell RR 3rd (2013) Role of uncoupling protein 3 in ischemia-reperfusion injury, arrhythmias, and preconditioning. Am J Physiol Heart Circ Physiol 304: H1192–200. https://doi.org/10.1152/ajpheart.00592.2012

  29. Palmieri F (2013) The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med 34:465–484. https://doi.org/10.1016/j.mam.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  30. Perrino C, Schiattarella GG, Sannino A, Pironti G, Petretta MP, Cannavo A, Gargiulo G, Ilardi F, Magliulo F, Franzone A, Carotenuto G, Serino F, Altobelli GG, Cimini V, Cuocolo A, Lombardi A, Goglia F, Indolfi C, Trimarco B, Esposito G (2013) Genetic deletion of uncoupling protein 3 exaggerates apoptotic cell death in the ischemic heart leading to heart failure. J Am Heart Assoc. https://doi.org/10.1161/JAHA.113.000086

  31. Ragan MT, Ragan VM, Wilson PN, Darley-Usmar PN (1987) Lower sub-fractionation of mitochondria and isolation of the proteins of oxidative phosphorylation in Darley-Usmar VMD, Rickwood D, Wilson MT, editors. Mitochondria: a practical approach, Oxford: IRL Pres. p 79–112

  32. Ricquier D (2017) UCP1, the mitochondrial uncoupling protein of brown adipocyte: a personal contribution and a historical perspective. Biochimie 134:3–8. https://doi.org/10.1016/j.biochi.2016.10.018

    Article  CAS  PubMed  Google Scholar 

  33. Rolfe DF, Hulbert AJ, Brand MD (1994) Characteristics of mitochondrial proton leak and control of oxidative phosphorylation in the major oxygen-consuming tissues of the rat. Biochim Biophys Acta 1188:405–416. https://doi.org/10.1016/0005-2728(94)90062-0

    Article  PubMed  Google Scholar 

  34. Schild L, Reinheckel T, Wiswedel I, Augustin W (1997) Short-term impairment of energy production in isolated rat liver mitochondria by hypoxia/reoxygenation: involvement of oxidative protein modification. Biochem J 328:205–210. https://doi.org/10.1042/bj3280205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Swoap SJ, Li C, Wess J, Parsons AD, Williams TD, Overton JM (2008) Vagal tone dominates autonomic control of mouse heart rate at thermoneutrality. Am J Physiol Heart Circ Physiol 294:H1581–H1588. https://doi.org/10.1152/ajpheart.01000.2007

    Article  CAS  PubMed  Google Scholar 

  36. Toime LJ, Brand MD (2000) Uncoupling protein-3 lowers reactive oxygen species production in isolated mitochondria. Free Radical Biol Med 49:606–611. https://doi.org/10.1016/j.freeradbiomed.2010.05.010

    Article  CAS  Google Scholar 

  37. Venditti P, Napolitano G, Di Stefano L, Agnisola C, Di Meo S (2011) Effect of vitamin E administration on response to ischaemia-reperfusion of hearts from cold-exposed rats. Exp Physiol 96:635–46. https://doi.org/10.1113/expphysiol.2011.058289

    Article  CAS  PubMed  Google Scholar 

  38. Venditti P, Napolitano G, Fasciolo G, Di Meo S (2019) Thyroid state affects H2O2 removal by rat heart mitochondria. Arch Biochem Biophys 662:61–67. https://doi.org/10.1016/j.abb.2018.11.025

    Article  CAS  PubMed  Google Scholar 

  39. Vögtle FN (2021) Open questions on the mitochondrial unfolded protein response. FEBS J 288:2856–2869

    Article  Google Scholar 

  40. Zhang Z, Zhang L, Zhou L, Lei Y, Zhang Y, Huang C (2019) Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress. Redox Biol 25:101047. https://doi.org/10.1016/j.redox.2018.11.005

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the University of Naples Federico II [Ricerca Dipartimentale 2018–2020].

Author information

Authors and Affiliations

Authors

Contributions

N.G., L.A., G.F., and V.P. conceived and designed the experiments; F.G. and M.N. carried out all the animal studies and performed the experiments; G.N., G.F., L.A., and V.P. analyzed the data; G.F., L.A., and V.P. wrote the manuscript; all the authors revised the manuscript.

The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding authors

Correspondence to Gaetana Napolitano, Assunta Lombardi or Paola Venditti.

Ethics declarations

Ethics approval and consent to participate

All animal protocols were approved by the Committee on the Ethics of Animal Experiments of the University of Naples Federico II and the Italian Minister of Health. Every effort was made to minimize animal pain and suffering.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• UCP3 ablation increases ROS content and reduces mitochondrial respiration

• KO UCP3 mice mitochondria show a high susceptibility to oxidative stress

• UCP3 regulates the ROS level in the heart of mice kept at thermoneutrality

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Napolitano, G., Fasciolo, G., Magnacca, N. et al. Oxidative damage and mitochondrial functionality in hearts from KO UCP3 mice housed at thermoneutrality. J Physiol Biochem 78, 415–425 (2022). https://doi.org/10.1007/s13105-022-00882-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-022-00882-9

Keywords

Navigation