Skip to main content

Advertisement

Log in

MSTN is an important myokine for weight-bearing training to attenuate bone loss in ovariectomized rats

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Weight-bearing training, as one of resistance exercises, is beneficial to bone health. Myostatin (MSTN) is a negative regulator of skeletal muscle growth and development. Animals lacking MSTN show increased bone mineral density (BMD). The aim of this study was to investigate the preventive effect of weight-bearing training on bone loss in ovariectomized rats and whether it was related to MSTN. In this study, the rats were randomly assigned to three group: Sham-ovariectomized (Sham), ovariectomized (OVX), ovariectomized and weight-bearing training (OWT). The rats in the OWT group ran at 20-m/min bearing with 35% of their body weight for 6 days/week. After 10 weeks, compared with the OVX group, weight-bearing training increased the BMD of total femur and trabecular bone by 8.13% and 57.44%, respectively. The OVX-induced destruction of bone microarchitecture including the thickness and number of trabeculae and bone volume fraction was all significantly improved (9.26%, 47.68%, 63.03%) in the OWT group. The OVX-induced degradation of bone mechanical properties was significantly enhanced in the OWT group (maximum load increased by 35.46%, stiffness increased by 89.19%, energy absorption increased by 53.4%; elastic modulus increased by 26.3%). Ten-week weight-bearing training also significantly upregulated the mRNA and protein expression of Wnt1 and β-catenin, which is crucial in bone development. Compared with the Sham group, MSTN in serum and muscle increased in the OVX group, but it decreased in the OWT group compared with the OVX group. Its receptor ActRIIB and downstream molecules Smad2/3 in the OVX group were downregulated in bone by weight-bearing training. The results indicated that MSTN is an important myokine for weight-bearing training to attenuate bone loss in ovariectomized rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY (2013) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 24:23–57. https://doi.org/10.1007/s00198-012-2074-y

    Article  CAS  PubMed  Google Scholar 

  2. Chao AS, Chen FP, Lin YC, Huang TS, Fan CM, Yu YW (2015) Application of the World Health Organization Fracture Risk Assessment Tool to predict need for dual-energy X-ray absorptiometry scanning in postmenopausal women. Taiwan J Obstet Gynecol 54:722–725. https://doi.org/10.1016/j.tjog.2015.10.005

    Article  PubMed  Google Scholar 

  3. Paola P, Daniela RM, Francesco C, Ernesto C, Di PM, Eugenio Q, Maurizio M, Sergio C (2016) Major osteoporotic fragility fractures: risk factor updates and societal impact. World Journal of Orthopedics 7:171

    Article  Google Scholar 

  4. Wolfgang, Sipos, Peter, Pietschmann, Martina, Rauner, Katharina, Kerschan-SchindlJanina, Patsch (2009) Pathophysiology of osteoporosis. WMW 159/9–10: 230–234. https://doi.org/10.1007/s10354-009-0647-y

  5. D’Amelio P, Grimaldi A, Di Bella S, Brianza SZM, Cristofaro MA, Tamone C, Giribaldi G, Ulliers D, Pescarmona GP, Isaia G (2008) Estrogen deficiency increases osteoclastogenesis up-regulating T cells activity: a key mechanism in osteoporosis. Bone 43:92–100. https://doi.org/10.1016/j.bone.2008.02.017

    Article  CAS  PubMed  Google Scholar 

  6. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Mitlak BH (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441

    Article  CAS  Google Scholar 

  7. Recker RR, Lewiecki EM, Miller PD, Reiffel J (2009) Safety of bisphosphonates in the treatment of osteoporosis. Am J Med 122: S22-S32. https://doi.org/10.1016/j.amjmed.2008.12.004

  8. Strampel DW, Emkey R, Civitelli R (2007) Safety considerations with bisphosphonates for the treatment of osteoporosis. Drug Saf 30:755–763

    Article  CAS  Google Scholar 

  9. Gong J, Chen X, Li S (2015) Efficacy of a community-based physical activity program KM2H2 for stroke and heart attack prevention among senior hypertensive patients: a cluster randomized controlled phase-ii trial. PLoS ONE 10:e0139442. https://doi.org/10.1371/journal.pone.0139442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Laughlin MH, Bowles DK, Duncker DJ (2012) The coronary circulation in exercise training. Am J Physiol Heart Circ Physiol 302:H10

    Article  CAS  Google Scholar 

  11. Thent ZC, Das S, Henry LJ (2013) Role of exercise in the management of diabetes mellitus: the global scenario. Plos One 8:e80436

    Article  Google Scholar 

  12. Giangregorio LM, Papaioannou A, Macintyre NJ, Ashe MC, Heinonen A, Shipp K, Wark J, McGill S, Keller H, Jain R, Laprade J, Cheung AM (2014) Too fit to fracture: exercise recommendations for individuals with osteoporosis or osteoporotic vertebral fracture. Osteoporos Int 25:821–835. https://doi.org/10.1007/s00198-013-2523-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hagihara Y, Fukuda S, Goto S, Iida H, Yamazaki M, Moriya H (2005) How many days per week should rats undergo running exercise to increase BMD? J Bone Miner Metab 23:289

    Article  Google Scholar 

  14. Joo Y, Sone T, Fukunaga M, Lim S, Onodera S (2003) Effects of endurance exercise on three-dimensional trabecular bone microarchitecture in young growing rats. Bone 33(4):485–493. https://doi.org/10.1016/S8756-3282(03)00212-6

  15. Layne JE, Nelson ME (1999) The effects of progressive resistance training on bone density: a review. Med Sci Sports Exerc 31:25–30

    Article  CAS  Google Scholar 

  16. Tang L, Gao X, Yang X, Zhang D, Zhang X, Du H, Han Y, Sun L (2016) Combination of weight-bearing training and anti-MSTN polyclonal antibody improve bone quality in rats. Int J Sport Nutr Exerc Metab 26:516–524. https://doi.org/10.1123/ijsnem.2015-0337

    Article  CAS  PubMed  Google Scholar 

  17. Brotto M, Bonewald L (2015) Bone and muscle: interactions beyond mechanical. Bone 80:109–114. https://doi.org/10.1016/j.bone.2015.02.010

    Article  PubMed  PubMed Central  Google Scholar 

  18. FERRETTI JL, COINTRY GR, CAPOZZA RF, Harold M (2003) Bone mass, bone strength, muscle bone interactions, osteopenias and osteoporoses: body composition and age-related diseases. Mech Ageing Dev 124:269–279

    Article  Google Scholar 

  19. Hart N, Nimphius S, Rantalainen T, Ireland A, Newton R (2017) Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J Musculoskelet Neuronal Interact 17:114–139

    CAS  PubMed  PubMed Central  Google Scholar 

  20. McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90. https://doi.org/10.1038/387083a0

    Article  CAS  Google Scholar 

  21. Reisz-Porszasz S, Bhasin S, Artaza JN, Shen R, Sinha-Hikim I, Hogue A, Fielder TJ, Gonzalez-Cadavid NF (2003) Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin. Am J Physiol Endocrinol Metab 285:E876–E888

    Article  CAS  Google Scholar 

  22. Qin Y, Peng Y, Zhao W, Pan J, Ksiezak-Reding H, Cardozo C, Wu Y, Divieti Pajevic P, Bonewald LF, Bauman WA (2017) Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: a novel mechanism in muscle-bone communication. J Biol Chem 292:11021–11033. https://doi.org/10.1074/jbc.M116.770941

  23. Elkasrawy MN, Hamrick MW (2010) Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J Musculoskelet Neuronal Interact 10:56

    CAS  PubMed  Google Scholar 

  24. Chi-Sung C, Norbert P, Hans W, Sharon A, Murray EM, Zhang HZ, Zhao JZ, Robin E, Janet L, Huang L (2013) Increased muscle force production and bone mineral density in ActRIIB-Fc-treated mature rodents. J Gerontol 68:1181–1192

  25. Zhang R, Oyajobi BO, Harris SE, Chen D, Tsao C, Deng HW, Zhao M (2013) Wnt/beta-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts. Bone 52:145–156. https://doi.org/10.1016/j.bone.2012.09.029

    Article  CAS  PubMed  Google Scholar 

  26. Huelsken J, Birchmeier W (2001) New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev 11:547–553. https://doi.org/10.1016/s0959-437x(00)00231-8

    Article  CAS  PubMed  Google Scholar 

  27. Wodarz A, Nusse R (1998) Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14:59–88. https://doi.org/10.1146/annurev.cellbio.14.1.59

    Article  CAS  PubMed  Google Scholar 

  28. Robinson JA, Chatterjee-Kishore M, Yaworsky PJ, Cullen DM, Zhao W, Li C, Kharode Y, Sauter L, Babij P, Brown EL (2006) Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem 281:31720–31728

    Article  CAS  Google Scholar 

  29. Tang L, Kang YT, Sun SX, Zhao TT, Cao WX, Fan XH, Guo JH, Sun LJ, Ta D (2020) Inhibition of MSTN signal pathway may participate in LIPUS preventing bone loss in ovariectomized rats. J Bone Miner Metab 38:14–26. https://doi.org/10.1007/s00774-019-01029-5

    Article  CAS  PubMed  Google Scholar 

  30. Haya J, Castelo-Branco C, Pérez-Medina T (2003) Prevention and treatment of postmenopausal osteoporosis. Ginecologia Clinica Y Quirurgica 4:144–156

    Google Scholar 

  31. Gomes RM, Junior MDF, Francisco FA, Moreira VM, de Almeida DL, Saavedra LPJ, de Oliveira JC, da Silva Franco CC, Pedrino GR, de Freitas Mathias PC, Natali MRM, Dias MJ, de Morais IJ, de Moraes SMF (2018) Strength training reverses ovariectomy-induced bone loss and improve metabolic parameters in female Wistar rats. Life Sci 213:134–141. https://doi.org/10.1016/j.lfs.2018.10.032

    Article  CAS  PubMed  Google Scholar 

  32. Ham JR, Choi RY, Yee ST, Hwang YH, Kim MJ, Lee MK (2017) Methoxsalen supplementation attenuates bone loss and inflammatory response in ovariectomized mice. Chem Biol Interact 278:135–140. https://doi.org/10.1016/j.cbi.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  33. Steiner B, Dimai HP, Steiner H, Cirar S, Fahrleitner-Pammer A (2019) Prescreening for osteoporosis with quantitative ultrasound in postmenopausal white women. J Ultrasound Med 38:1553–1559. https://doi.org/10.1002/jum.14844

    Article  PubMed  Google Scholar 

  34. Takimoto T, Hatanaka M, Hoshino T, Takara T, Tanaka K, Shimizu A, Morita H, Nakamura T (2018) Effect of Bacillus subtilis C-3102 on bone mineral density in healthy postmenopausal Japanese women: a randomized, placebo-controlled, double-blind clinical trial. Biosci Microbiota Food Health 37:87–96. https://doi.org/10.12938/bmfh.18-006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seibel MJ (2005) Clinical use of markers of bone turnover in metastatic bone disease. Nat Clin Pract Oncol 2:504–517

    Article  CAS  Google Scholar 

  36. Alexandru MO, Melania B, Dumitru IS, Camelia-Vidita G, Anca T, Claudia B (2018) Correlations between bone turnover markers, serum magnesium and bone mass density in postmenopausal osteoporosis. Clin Interv Aging 13:1383–1389

    Article  Google Scholar 

  37. Mukaiyama K, Kamimura M, Uchiyama S, Ikegami S, Nakamura Y, Kato H (2015) Elevation of serum alkaline phosphatase (ALP) level in postmenopausal women is caused by high bone turnover. Aging Clin Exp Res 27:413–418. https://doi.org/10.1007/s40520-014-0296-x

    Article  PubMed  Google Scholar 

  38. Papapetrou PD (2009) Bisphosphonate-associated adverse events. Hormones 8:96–110

    Article  Google Scholar 

  39. Yang J, Sun L, Fan X, Yin B, Kang Y, Tang L, An S (2018) Effect of exercise on bone in poorly controlled type 1 diabetes mediated by the ActRIIB/Smad signaling pathway. Exp Ther Med 16:3686–3693. https://doi.org/10.3892/etm.2018.6601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Camporez JOPG, Petersen MC, Abudukadier A, Moreira GV, Jurczak MJ, Friedman G, Haqq CM, Petersen KF, Shulman GI (2016) Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. PNAS 113:2212–2217

  41. Haidet AM, Rizo L, Handy C, Umapathi P, Eagle A, Shilling C, Boue D, Martin PT, Sahenk Z, Mendell JR, Kaspar BK (2008) Long-term enhancement of skeletal muscle mass and strength by single gene administration of myostatin inhibitors. Proc Natl Acad Sci U S A 105:4318–4322. https://doi.org/10.1073/pnas.0709144105

    Article  PubMed  PubMed Central  Google Scholar 

  42. Santos AR, Neves MT Jr, Gualano B, Laurentino GC, Lancha AH Jr, Ugrinowitsch C, Lima FR, Aoki MS (2014) Blood flow restricted resistance training attenuates myostatin gene expression in a patient with inclusion body myositis. Biol Sport 31:121–124. https://doi.org/10.5604/20831862.1097479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tang L, Luo K, Liu C, Wang X, Zhang D, Chi A, Zhang J, Sun L (2014) Decrease in myostatin by ladder-climbing training is associated with insulin resistance in diet-induced obese rats. Chin Med J (Engl) 127:2342–2349

    CAS  Google Scholar 

  44. Hamrick MW, Shi X, Zhang W, Pennington C, Thakore H, Haque M, Kang B, Isales CM, Fulzele S, Wenger KH (2007) Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading. Bone 40:1544–1553

    Article  CAS  Google Scholar 

  45. Bialek P, Parkington J, Li X, Gavin D, Wallace C, Zhang J, Root A, Yan G, Warner L, Seeherman HJ, Yaworsky PJ (2014) A myostatin and activin decoy receptor enhances bone formation in mice. Bone 60:162–171. https://doi.org/10.1016/j.bone.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  46. Tang L, Yang X, Gao X, Du H, Han Y, Zhang D, Wang Z, Sun L (2016) Inhibiting myostatin signaling prevents femoral trabecular bone loss and microarchitecture deterioration in diet-induced obese rats. Exp Biol Med (Maywood) 241:308–316. https://doi.org/10.1177/1535370215606814

    Article  CAS  Google Scholar 

  47. Duan P, Bonewald LF (2016) The role of the wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth. International Journal of Biochemistry & Cell Biology 77:23–29

    Article  CAS  Google Scholar 

  48. Monroe DG, McGee-Lawrence ME, Oursler MJ, Westendorf JJ (2012) Update on Wnt signaling in bone cell biology and bone disease. Gene 492:1–18. https://doi.org/10.1016/j.gene.2011.10.044

    Article  CAS  PubMed  Google Scholar 

  49. Haxaire C, Hay E, Geoffroy V (2016) Runx2 controls bone resorption through the down-regulation of the Wnt pathway in osteoblasts. Am J Pathol 186:1598–1609. https://doi.org/10.1016/j.ajpath.2016.01.016

    Article  CAS  PubMed  Google Scholar 

  50. Chen G, Deng C, Li YP (2012) TGF-β and BMP signaling in osteoblast differentiation and bone formation. International Journal of Biological Ences 8:272–288

    CAS  Google Scholar 

  51. Yang Y, Li Z, Chen G, Li J, Li H, Yu M, Zhang W, Guo W, Tian W (2018) GSK3beta regulates ameloblast differentiation via Wnt and TGF-beta pathways. J Cell Physiol 233:5322–5333. https://doi.org/10.1002/jcp.26344

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 11974233, 11774213, and 11502134), the Natural Science Foundation of Shaanxi Province (2018JM1022), and the Fundamental Research Funds for the Central Universities (GK202103123).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the design, interpretation of the studies, analysis of the data, and review of the manuscript. LT and LS designed the experiments. TZ conducted the experiments and performed the analysis. YK, SA, and XF participated in the establishment of the animal model and exercise training. TZ and LS wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lijun Sun.

Ethics declarations

Ethics approval

All procedures were approved by the Animal Ethical Committee of Shaanxi Normal University, and carried out in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publications No. 8023, revised 1978).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

1. Weight-bearing training partially prevented bone loss in ovariectomized rats.

2. Weight-bearing training suppressed MSTN expression in muscle and serum.

3. Weight-bearing training inhibited the downstream molecules of MSTN in the bone.

4. Wnt/β-catenin bone formation pathway was also activated.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1085 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Zhao, T., Kang, Y. et al. MSTN is an important myokine for weight-bearing training to attenuate bone loss in ovariectomized rats. J Physiol Biochem 78, 61–72 (2022). https://doi.org/10.1007/s13105-021-00838-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-021-00838-5

Keywords

Navigation