Akkarachiyasit S, Charoenlertkul P, Yibchok-Anun S, Adisakwattana S (2010) Inhibitory activities of cyanidin and its glycosides and synergistic effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase. Int J Mol Sci 11:3387–3396. https://doi.org/10.3390/ijms11093387
Article
PubMed
PubMed Central
CAS
Google Scholar
Akkarachiyasit S, Yibchok-Anun S, Wacharasindhu S, Adisakwattana S (2011) In vitro inhibitory effects of cyandin-3-rutinoside on pancreatic α-amylase and its combined effect with acarbose. Molecules 16:2075–2083. https://doi.org/10.3390/molecules16032075
Article
PubMed
PubMed Central
CAS
Google Scholar
Alvarado J, Schoenlau F, Leschot A, Salgado AM, Portales PV (2016) Delphinol® standardized maqui berry extract significantly lowers blood glucose and improves blood lipid profile in prediabetic individuals in three-month clinical trial. Panminerva Med 58:1–6
PubMed
Google Scholar
Alvarado JL, Leschot A, Olivera-Nappa Á, Salgado A-MM, Rioseco H, Lyon C, Vigil P (2016) Delphinidin-rich maqui berry extract (Delphinol®) lowers fasting and postprandial glycemia and insulinemia in prediabetic individuals during oral glucose tolerance tests. Biomed Res Int 2016:9070537. https://doi.org/10.1155/2016/9070537
Article
PubMed
PubMed Central
CAS
Google Scholar
An JH, Kim DL, Lee TB, Kim KJ, Kim SHSG, Kim NH, Kim HY, Choi DS, Kim SHSG (2016) Effect of Rubus Occidentalis extract on metabolic parameters in subjects with prediabetes: a proof-of-concept, randomized, double-blind, placebo-controlled clinical trial. Phyther Res 30:1634–1640. https://doi.org/10.1002/ptr.5664
Article
Google Scholar
Anunciação PC, de Morais Cardoso L, Queiroz VAV, de Menezes CB, de Carvalho CWP, Pinheiro-Sant’Ana M, de Cássia Gonçalves Alfenas R (2018) Consumption of a drink containing extruded sorghum reduces glycaemic response of the subsequent meal. Eur J Nutr 57:251–257. https://doi.org/10.1007/s00394-016-1314-x
Article
PubMed
CAS
Google Scholar
Asgary S, Rafieiankopaei M, Sahebkar A, Shamsi F, Goli-malekabadi N (2016) Anti-hyperglycemic and anti-hyperlipidemic effects of Vaccinium myrtillus fruit in experimentally induced diabetes (antidiabetic effect of Vaccinium myrtillus fruit). J Sci Food Agric 96:764–768. https://doi.org/10.1002/jsfa.7144
Article
PubMed
CAS
Google Scholar
Asrafuzzaman M, Cao Y, Afroz R, Kamato D, Gray S, Little PJ (2017) Animal models for assessing the impact of natural products on the aetiology and metabolic pathophysiology of Type 2 diabetes. Biomed Pharmacother 89:1242–1251
Article
CAS
Google Scholar
Bae IY, An JS, Oh IK, Lee HG (2017) Optimized preparation of anthocyanin-rich extract from black rice and its effects on in vitro digestibility. Food Sci Biotechnol 26:1415–1422. https://doi.org/10.1007/s10068-017-0188-x
Article
PubMed
PubMed Central
CAS
Google Scholar
Banihani S, Swedan S, Alguraan Z (2013) Pomegranate and type 2 diabetes. Nutr Res 33:341–348. https://doi.org/10.1016/j.nutres.2013.03.003
Article
PubMed
CAS
Google Scholar
Batterham RL, Le Roux CW, Cohen MA, Park AJ, Ellis SM, Patterson M, Frost GS, Ghatei MA, Bloom SR (2003) Pancreatic polypeptide reduces appetite and food intake in humans. J Clin Endocrinol Metab 88:3989–3992. https://doi.org/10.1210/jc.2003-030630
Article
PubMed
CAS
Google Scholar
Bell L, Lamport DJ, Butler LT, Williams CM (2017) A study of glycaemic effects following acute anthocyanin-rich blueberry supplementation in healthy young adults. Food Funct 8:3104–3110. https://doi.org/10.1039/c7fo00724h
Article
PubMed
CAS
Google Scholar
Boath AS, Stewart D, McDougall GJ (2012) Berry components inhibit α-glucosidase in vitro: synergies between acarbose and polyphenols from black currant and rowanberry. Food Chem 135:929–936. https://doi.org/10.1016/j.foodchem.2012.06.065
Article
PubMed
CAS
Google Scholar
Bonina FP, Leotta C, Scalia G, Puglia C, Trombetta D, Tringali G, Roccazzello AM, Rapisarda P, Saija A (2002) Evaluation of oxidative stress in diabetic patients after supplementation with a standardised red orange extract. Diabetes Nutr Metab 15:14–19
PubMed
CAS
Google Scholar
Cantos E, Espín JC, Tomás-Barberán FA (2002) Varietal differences among the polyphenol profiles of seven table grape cultivars studied by LC-DAD-MS-MS. J Agric Food Chem 50:5691–5696. https://doi.org/10.1021/jf0204102
Article
PubMed
CAS
Google Scholar
Cásedas G, Les F, Gómez-Serranillos MPMP, Smith C, López V (2016) Bioactive and functional properties of sour cherry juice (Prunus cerasus). Food Funct 7:4675–4682. https://doi.org/10.1039/c6fo01295g
Article
PubMed
Google Scholar
Cásedas G, Les F, Gómez-Serranillos MP, Smith C, López V (2017) Anthocyanin profile, antioxidant activity and enzyme inhibiting properties of blueberry and cranberry juices: a comparative study. Food Funct 8:4187–4193. https://doi.org/10.1039/c7fo01205e
Article
PubMed
CAS
Google Scholar
Castañeda-Ovando A, de Lourdes Pacheco-Hernández M, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA (2009) Chemical studies of anthocyanins: a review. Food Chem 113:859–871. https://doi.org/10.1016/j.foodchem.2008.09.001
Article
CAS
Google Scholar
Castro-Acosta ML, Smith L, Miller RJ, McCarthy DI, Farrimond JA, Hall WL (2016) Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin concentrations. J Nutr Biochem 38:154–161. https://doi.org/10.1016/j.jnutbio.2016.09.002
Article
PubMed
PubMed Central
CAS
Google Scholar
Castro-Acosta ML, Stone SG, Mok JE, Mhajan RK, Fu C-II, Lenihan-Geels GN, Corpe CP, Hall WL (2017) Apple and blackcurrant polyphenol-rich drinks decrease postprandial glucose, insulin and incretin response to a high-carbohydrate meal in healthy men and women. J Nutr Biochem 49:53–62. https://doi.org/10.1016/j.jnutbio.2017.07.013
Article
PubMed
CAS
Google Scholar
Chamorro MF, Reiner G, Theoduloz C, Ladio A, Schmeda-Hirschmann G, Gómez-Alonso S, Jiménez-Aspee F (2019) Polyphenol composition and (bio)activity of Berberis species and wild strawberry from the Argentinean Patagonia. Molecules 24:3331. https://doi.org/10.3390/molecules24183331
Article
PubMed Central
CAS
Google Scholar
Chang S, Tan C, Frankel EN, Barrett DM (2000) Low-Density Lipoprotein antioxidant activity of phenolic compounds and polyphenol oxidase activity in selected clingstone peach cultivars. J Agric Food Chem 48:147–151. https://doi.org/10.1021/jf9904564
Article
PubMed
CAS
Google Scholar
Chen L, Magliano DJ, Zimmet PZ (2012) The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol 8:228–236
Article
CAS
Google Scholar
Chen W, Müller D, Richling E, Wink M (2013) Anthocyanin-rich purple wheat prolongs the life span of Caenorhabditis elegans probably by activating the DAF-16/FOXO transcription factor. J Agric Food Chem 61:3047–3053. https://doi.org/10.1021/jf3054643
Article
PubMed
CAS
Google Scholar
Chen Z, Wang C, Pan Y, Gao X, Chen H (2018) Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice. Food Funct 9:426–439. https://doi.org/10.1039/c7fo00983f
Article
PubMed
CAS
Google Scholar
Chen J, Wu S, Zhang Q, Yin Z, Zhang L (2020) α-Glucosidase inhibitory effect of anthocyanins from Cinnamomum camphora fruit: inhibition kinetics and mechanistic insights through in vitro and in silico studies. Int J Biol Macromol 143:696–703. https://doi.org/10.1016/j.ijbiomac.2019.09.091
Article
PubMed
CAS
Google Scholar
Choi KH, Lee HA, Park MH, Han JS (2016) Mulberry (Morus alba L.) fruit extract containing anthocyanins improves glycemic control and insulin sensitivity via activation of AMP-activated protein kinase in diabetic C57BL/Ksj-db/db mice. J Med Food 19:737–745. https://doi.org/10.1089/jmf.2016.3665
Article
PubMed
CAS
Google Scholar
Choi KH, Lee HA, Park MH, Han JS (2017) Cyanidin-3-rutinoside increases glucose uptake by activating the PI3K/Akt pathway in 3T3-L1 adipocytes. Environ Toxicol Pharmacol 54:1–6. https://doi.org/10.1016/j.etap.2017.06.007
Article
PubMed
CAS
Google Scholar
Chun OK, Kim DO, Lee CY (2003) Superoxide radical scavenging activity of the major polyphenols in fresh plums. J Agric Food Chem 51:8067–8072. https://doi.org/10.1021/jf034740d
Article
PubMed
CAS
Google Scholar
D’Urso G, Mes JJ, Montoro P, Hall RD, de Vos RCH (2019) Identification of bioactive phytochemicals in mulberries. Metabolites 10:7. https://doi.org/10.3390/metabo10010007
Article
PubMed Central
CAS
Google Scholar
Daveri E, Cremonini E, Mastaloudis A, Hester SN, Wood SM, Waterhouse AL, Anderson M, Fraga CG, Oteiza PI (2018) Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice. Redox Biol 18:16–24. https://doi.org/10.1016/j.redox.2018.05.012
Article
PubMed
PubMed Central
CAS
Google Scholar
De Ancos B, Ibañez E, Reglero G, Cano MP (2000) Frozen storage effects on anthocyanins and volatile compounds of raspberry fruit. J Agric Food Chem 48:873–879. https://doi.org/10.1021/jf990747c
Article
PubMed
CAS
Google Scholar
de Mello VDF, Lankinen MA, Lindström J, Puupponen-Pimiä R, Laaksonen DE, Pihlajamäki J, Lehtonen M, Uusitupa M, Tuomilehto J, Kolehmainen M, Törrönen R, Hanhineva K (2017) Fasting serum hippuric acid is elevated after bilberry (Vaccinium myrtillus) consumption and associates with improvement of fasting glucose levels and insulin secretion in persons at high risk of developing type 2 diabetes. Mol Nutr Food Res 61:1–26. https://doi.org/10.1002/mnfr.201700019
Article
CAS
Google Scholar
De Sun C, Zhang B, Zhang JK, Xu CJ, Wu YL, Li X, Chen KS (2012) Cyanidin-3-glucoside-rich extract from Chinese bayberry fruit protects pancreatic β cells and ameliorates hyperglycemia in streptozotocin-induced diabetic mice. J Med Food 15:288–298. https://doi.org/10.1089/jmf.2011.1806
Article
PubMed
PubMed Central
CAS
Google Scholar
de Villiers A, Vanhoenacker G, Majek P, Sandra P (2004) Determination of anthocyanins in wine by direct injection liquid chromatography-diode array detection-mass spectrometry and classification of wines using discriminant analysis. J Chromatogr A 1054:195–204
Article
Google Scholar
Djaoudene O, López V, Cásedas G, Les F, Schisano C, Bachir Bey M, Tenore GC (2019) Phoenix dactylifera L. seeds: a by-product as a source of bioactive compounds with antioxidant and enzyme inhibitory properties. Food Funct 10:4953–4965. https://doi.org/10.1039/c9fo01125k
Article
PubMed
CAS
Google Scholar
Du X, Myracle AD (2018) Fermentation alters the bioaccessible phenolic compounds and increases the alpha-glucosidase inhibitory effects of aronia juice in a dairy matrix following: in vitro digestion. Food Funct 9:2998–3007. https://doi.org/10.1039/c8fo00250a
Article
PubMed
CAS
Google Scholar
DuPont MS, Mondin Z, Williamson G, Price KR (2000) Effect of variety, processing, and storage on the flavonoid glycoside content and composition of lettuce endive. J Agric Food Chem 48:3957–3964. https://doi.org/10.1021/jf0002387
Article
PubMed
CAS
Google Scholar
Esatbeyoglu T, Rodríguez-Werner M, Schlösser A, Liehr M, Ipharraguerre I, Winterhalter P, Rimbach G (2016) Fractionation of plant bioactives from black carrots (Daucus carota subspecies sativus varietas atrorubens Alef.) by adsorptive membrane chromatography and analysis of their potential anti-diabetic activity. J Agric Food Chem 64:5901–5908. https://doi.org/10.1021/acs.jafc.6b02292
Article
PubMed
CAS
Google Scholar
Feshani AM, Kouhsari SM, Mohammadi S (2011) Vaccinium arctostaphylos, a common herbal medicine in Iran: molecular and biochemical study of its antidiabetic effects on alloxan-diabetic Wistar rats. J Ethnopharmacol 133:67–74. https://doi.org/10.1016/j.jep.2010.09.002
Article
PubMed
CAS
Google Scholar
Fitzenberger E, Deusing DJ, Wittkop A, Kler A, Kriesl E, Bonnländer B, Wenzel U (2014) Effects of plant extracts on the reversal of glucose-induced impairment of stress-resistance in Caenorhabditis elegans. Plant Foods Hum Nutr 69:78–84. https://doi.org/10.1007/s11130-013-0399-0
Article
PubMed
Google Scholar
Gao L, Mazza G (1995) Characterization, quantitation, and distribution of anthocyanins and colorless phenolics in sweet cherries. J Agric Food Chem 43:343–346. https://doi.org/10.1021/jf00050a015
Article
CAS
Google Scholar
Gennaro L, Leonardi C, Esposito F, Salucci M, Maiani G, Quaglia G, Fogliano V (2002) Flavonoid and carbohydrate contents in tropea red onions: effects of homelike peeling and storage. J Agric Food Chem 50:1904–1910. https://doi.org/10.1021/jf011102r
Article
PubMed
CAS
Google Scholar
Ghosh D, Konishi T (2007) Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac J Clin Nutr 16:200–208. https://doi.org/10.3390/ijms13022472
Article
PubMed
CAS
Google Scholar
Gil MI, Tomás-Barberán FA, Hess-Pierce B, Holcroft DM, Kader AA (2000) Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem 48:4581–4589
Article
CAS
Google Scholar
Gironés-Vilaplana A, Villaño D, Moreno DA, García-Viguera C (2013) New isotonic drinks with antioxidant and biological capacities from berries (maqui, açaí and blackthorn) and lemon juice. Int J Food Sci Nutr 64:897–906. https://doi.org/10.3109/09637486.2013.809406
Article
PubMed
CAS
Google Scholar
Guasch-Ferré M, Merino J, Sun Q, Fitó M, Salas-Salvadó J (2017) Dietary polyphenols, Mediterranean diet, prediabetes, and type 2 diabetes: a narrative review of the evidence. Oxidative Med Cell Longev 2017
Guo H, Ling W (2015) The update of anthocyanins on obesity and type 2 diabetes: experimental evidence and clinical perspectives. Rev Endocr Metab Disord 16. https://doi.org/10.1007/s11154-014-9302-z
Guo H, Xia M, Zou T, Ling W, Zhong R, Zhang W (2012) Cyanidin 3-glucoside attenuates obesity-associated insulin resistance and hepatic steatosis in high-fat diet-fed and db/db mice via the transcription factor FoxO1. J Nutr Biochem 23:349–360. https://doi.org/10.1016/j.jnutbio.2010.12.013
Article
PubMed
CAS
Google Scholar
Gurrola-Díaz CM, García-López PM, Sánchez-Enríquez S, Troyo-Sanromán R, Andrade-González I, Gómez-Leyva JF (2010) Effects of Hibiscus sabdariffa extract powder and preventive treatment (diet) on the lipid profiles of patients with metabolic syndrome (MeSy). Phytomedicine 17:500–505. https://doi.org/10.1016/j.phymed.2009.10.014
Article
PubMed
Google Scholar
Gutierrez-Albanchez E, Kirakosyan A, Bolling SF, García-Villaraco A, Gutierrez-Mañero J, Ramos-Solano B (2019) Biotic elicitation as a tool to improve strawberry and raspberry extract potential on metabolic syndrome-related enzymes in vitro. J Sci Food Agric 99:2939–2946. https://doi.org/10.1002/jsfa.9507
Article
PubMed
CAS
Google Scholar
Halpern SH, Douglas MJ (2005) Appendix: Jadad scale for reporting randomized controlled trials. In: Halpern SH, Douglas MJ (eds) Evidence-based Obstetric Anesthesia. Blackwell Publishing Ltd, Oxford, pp 237–238
Chapter
Google Scholar
Hasan MM, Ahmed QU, Mat Soad SZ, Tunna TS (2018) Animal models and natural products to investigate in vivo and in vitro antidiabetic activity. Biomed Pharmacother 101:833–841
Article
CAS
Google Scholar
Hertweck M, Göbel C, Baumeister R (2004) C. elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev Cell 6:577–588. https://doi.org/10.1016/S1534-5807(04)00095-4
Article
PubMed
CAS
Google Scholar
Hidalgo J, Flores C, Hidalgo MA, Perez M, Yañez A, Quiñones L, Caceres DD, Burgos RA (2014) Delphinol® standardized maqui berry extract reduces postprandial blood glucose increase in individuals with impaired glucose regulation by novel mechanism of sodium glucose cotransporter inhibition. Panminerva Med 56:1–7
PubMed
CAS
Google Scholar
Hollands WJ, Armah CN, Doleman JF, Perez-Moral N, Winterbone MS, Kroon PA (2018) 4-Week consumption of anthocyanin-rich blood orange juice does not affect LDL-cholesterol or other biomarkers of CVD risk and glycaemia compared with standard orange juice: a randomised controlled trial. Br J Nutr 119:415–421. https://doi.org/10.1017/S0007114517003865
Article
PubMed
CAS
Google Scholar
Hsu JD, Wu CC, Hung CN, Wang CJ, Huang HP (2016) Myrciaria cauliflora extract improves diabetic nephropathy via suppression of oxidative stress and inflammation in streptozotocin-nicotinamide mice. J Food Drug Anal 24:730–737. https://doi.org/10.1016/j.jfda.2016.03.009
Article
PubMed
Google Scholar
Huang B, Wang Z, Park JH, Ryu OH, Choi MK, Lee JY, Kang YH, Lim SS (2015) Anti-Diabetic effect of purple corn extract on C57BL/KsJ db/db mice. Nutr Res Pract 9:17–21. https://doi.org/10.4162/nrp.2015.9.1.22
Article
CAS
Google Scholar
Huang PC, Wang GJ, Fan MJ, Asokan Shibu M, Liu YT, Padma Viswanadha V, Lin YL, Lai CH, Chen YF, Liao HE, Huang CY (2017) Cellular apoptosis and cardiac dysfunction in STZ-induced diabetic rats attenuated by anthocyanins via activation of IGFI-R/PI3K/Akt survival signaling. Environ Toxicol 32:2471–2480. https://doi.org/10.1002/tox.22460
Article
PubMed
CAS
Google Scholar
Iizuka Y, Ozeki A, Tani T, Tsuda T (2018) Blackcurrant extract ameliorates hyperglycemia in type 2 diabetic mice in association with increased basal secretion of glucagon-like peptide-1 and activation of AMP-activated protein kinase. J Nutr Sci Vitaminol (Tokyo) 64:258–264. https://doi.org/10.3177/jnsv.64.258
Article
CAS
Google Scholar
Inaguma T, Han J, Isoda H (2011) Improvement of insulin resistance by Cyanidin 3-glucoside, anthocyanin from black beans through the up-regulation of GLUT4 gene expression From 22nd European Society for Animal Cell Technology (ESACT) Meeting on Cell Based Technologies Vienna, Austria. 15. BMC Proc 5:P21. doi: https://doi.org/10.1186/1753-6561-5-S8-P21
International Diabetes Federation (2019) What is diabetes. In: idf.org. https://www.idf.org/aboutdiabetes/what-is-diabetes.html. Accessed 23 Dec 2019
Jeon YD, Kang SH, Moon KH, Lee JH, Kim DG, Kim W, Kim JS, Ahn BY, Jin JS (2018) The Effect of aronia berry on type 1 diabetes in vivo and in vitro. J Med Food 21:244–253. https://doi.org/10.1089/jmf.2017.3939
Article
PubMed
CAS
Google Scholar
Jia Y, Hoang MH, Jun HJ, Lee JH, Lee SJ (2013) Cyanidin, a natural flavonoid, is an agonistic ligand for liver X receptor alpha and beta and reduces cellular lipid accumulation in macrophages and hepatocytes. Bioorganic Med Chem Lett 23:4185–4190. https://doi.org/10.1016/j.bmcl.2013.05.030
Article
CAS
Google Scholar
Jin Q, Yang J, Ma L, Cai J, Li J (2015) Comparison of polyphenol profile and inhibitory activities against oxidation and α-glucosidase in mulberry (genus morus) cultivars from China. J Food Sci 80:C2440–C2451. https://doi.org/10.1111/1750-3841.13099
Article
PubMed
CAS
Google Scholar
Johnson MH, De Mejia EG (2016) Phenolic compounds from fermented berry beverages modulated gene and protein expression to increase insulin secretion from pancreatic β-cells in vitro. J Agric Food Chem 64:2569–2581. https://doi.org/10.1021/acs.jafc.6b00239
Article
PubMed
CAS
Google Scholar
Johnson MH, De Mejia EG, Fan J, Lila MA, Yousef GG (2013) Anthocyanins and proanthocyanidins from blueberry-blackberry fermented beverages inhibit markers of inflammation in macrophages and carbohydrate-utilizing enzymes in vitro. Mol Nutr Food Res 57:1182–1197. https://doi.org/10.1002/mnfr.201200678
Article
PubMed
CAS
Google Scholar
Kang GG, Francis N, Hill R, Waters D, Blanchard C, Santhakumar AB (2019) Dietary polyphenols and gene expression in molecular pathways associated with type 2 diabetes mellitus: a review. Int J Mol Sci 21:140. https://doi.org/10.3390/ijms21010140
Article
PubMed Central
CAS
Google Scholar
Karkute SG, Koley TK, Yengkhom BK, Tripathi A, Srivastava S, Maurya A, Singh B (2018) Anti-diabetic phenolic compounds of black carrot (Daucus carota Subspecies sativus var. atrorubens Alef.) inhibit enzymes of glucose metabolism: an in silico and in vitro validation. Med Chem (Los Angeles) 14:641–649. https://doi.org/10.2174/1573406414666180301092819
Article
CAS
Google Scholar
Kato M, Tani T, Terahara N, Tsuda T (2015) The anthocyanin delphinidin 3-rutinoside stimulates glucagon-like peptide-1 secretion in murine GLUTag cell line via the Ca2+/calmodulin-dependent kinase II pathway. PLoS One 10:e0126157. https://doi.org/10.1371/journal.pone.0126157
Article
PubMed
PubMed Central
CAS
Google Scholar
Kebede M, Ferdaoussi M, Mancini A, Alquier T, Kulkarni RN, Walker MD, Poitout V (2012) Glucose activates free fatty acid receptor 1 gene transcription via phosphatidylinositol-3-kinase-dependent O-GlcNAcylation of pancreas-duodenum homeobox-1. Proc Natl Acad Sci U S A 109:2376–2381. https://doi.org/10.1073/pnas.1114350109
Article
PubMed
PubMed Central
Google Scholar
Khalifa I, Xia D, Dutta K, Peng J, Jia Y, Li C (2020) Mulberry anthocyanins exert anti-AGEs effects by selectively trapping glyoxal and structural-dependently blocking the lysyl residues of β-lactoglobulins. Bioorg Chem 96:103615. https://doi.org/10.1016/j.bioorg.2020.103615
Article
PubMed
CAS
Google Scholar
Kianbakht S, Abasi B, Dabaghian FH (2013) Anti-hyperglycemic effect of vaccinium arctostaphylos in type 2 diabetic patients: a randomized controlled trial. Forsch Komplementarmed 20:17–22. https://doi.org/10.1159/000346607
Article
Google Scholar
Kim JY, Hong JH, Jung HK, Jeong YS, Cho KH (2012) Grape skin and loquat leaf extracts and acai puree have potent anti-atherosclerotic and anti-diabetic activity in vitro and in vivo in hypercholesterolemic zebrafish. Int J Mol Med 30:606–614. https://doi.org/10.3892/ijmm.2012.1045
Article
PubMed
CAS
Google Scholar
Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, Huypens P, Beckers J, De Angelis MH, Schürmann A, Bakhti M, Klingenspor M, Heiman M, Cherrington AD, Ristow M, Lickert H, Wolf E, Havel PJ, Müller TD, Tschöp MH (2018) Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 14:140–162. https://doi.org/10.1038/nrendo.2017.161
Article
Google Scholar
Koh ES, Lim JH, Kim MY, Chung S, Shin SJ, Choi BS, Kim HW, Hwang SY, Kim SW, Park CW, Chang YS (2015) Anthocyanin-rich Seoritae extract ameliorates renal lipotoxicity via activation of AMP-activated protein kinase in diabetic mice. J Transl Med 13:203. https://doi.org/10.1186/s12967-015-0563-4
Article
PubMed
PubMed Central
CAS
Google Scholar
Kurimoto Y, Shibayama Y, Inoue S, Soga M, Takikawa M, Ito C, Nanba F, Yoshida T, Yamashita Y, Ashida H, Tsuda T (2013) Black soybean seed coat extract ameliorates hyperglycemia and insulin sensitivity via the activation of AMP-activated protein kinase in diabetic mice. J Agric Food Chem 61:5558–5564. https://doi.org/10.1021/jf401190y
Article
PubMed
CAS
Google Scholar
Kusunoki M, Sato D, Tsutsumi K, Tsutsui H, Nakamura T, Oshida Y (2015) Black soybean extract improves lipid profiles in fenofibrate-treated type 2 diabetics with postprandial hyperlipidemia. J Med Food 18:615–618. https://doi.org/10.1089/jmf.2014.3234
Article
PubMed
CAS
Google Scholar
Lai D, Huang M, Zhao L, Tian Y, Li Y, Liu D, Wu Y, Deng F (2019) Delphinidin-induced autophagy protects pancreatic β cells against apoptosis resulting from high-glucose stress via AMPK signaling pathway. Acta Biochim Biophys Sin Shanghai 51:1242–1249. https://doi.org/10.1093/abbs/gmz126
Article
PubMed
CAS
Google Scholar
Lee JS, Kim YR, Park JM, Kim YE, Baek NI, Hong EK (2015) Cyanidin-3-glucoside isolated from mulberry fruits protects pancreatic β-cells against glucotoxicity-induced apoptosis. Mol Med Rep 11:2723–2728. https://doi.org/10.3892/mmr.2014.3078
Article
PubMed
CAS
Google Scholar
Les F, Prieto JM, Arbonés-Mainar JM, Valero MS, López V (2015) Bioactive properties of commercialised pomegranate (Punica granatum) juice: antioxidant, antiproliferative and enzyme inhibiting activities. Food Funct 6:2049–2057. https://doi.org/10.1039/c5fo00426h
Article
PubMed
CAS
Google Scholar
Les F, Carpéné C, Arbonés-Mainar JM, Decaunes P, Valero MS, López V (2017) Pomegranate juice and its main polyphenols exhibit direct effects on amine oxidases from human adipose tissue and inhibit lipid metabolism in adipocytes. J Funct Foods 33:323–331. https://doi.org/10.1016/j.jff.2017.04.006
Article
CAS
Google Scholar
Les F, Arbonés-Mainar JM, Valero MS, López V (2018) Pomegranate polyphenols and urolithin A inhibit α-glucosidase, dipeptidyl peptidase-4, lipase, triglyceride accumulation and adipogenesis related genes in 3T3-L1 adipocyte-like cells. J Ethnopharmacol 220:67–74. https://doi.org/10.1016/j.jep.2018.03.029
Article
PubMed
CAS
Google Scholar
Li D, Zhang Y, Liu Y, Sun R, Xia M (2015) Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients. J Nutr 145:742–748. https://doi.org/10.3945/jn.114.205674
Article
PubMed
CAS
Google Scholar
Li F, Zhang B, Chen G, Fu X (2017) The novel contributors of anti-diabetic potential in mulberry polyphenols revealed by UHPLC-HR-ESI-TOF-MS/MS. Food Res Int 100:873–884. https://doi.org/10.1016/j.foodres.2017.06.052
Article
PubMed
CAS
Google Scholar
Lim SM, Lee HS, Jung JI, Kim SM, Kim NY, Seo TS, Bae JS, Kim EJ (2019) Cyanidin-3-o-galactoside-enriched aronia melanocarpa extract attenuates weight gain and adipogenic pathways in high-fat diet-induced obese C57bl/6 mice. Nutrients 11:1190. https://doi.org/10.3390/nu11051190
Article
PubMed Central
CAS
Google Scholar
Lindström J, Louheranta A, Mannelin M, Rastas M, Salminen V, Eriksson J, Uusitupa M, Tuomilehto J (2003) The Finnish Diabetes Prevention Study (DPS): lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care 26:3230–3236. https://doi.org/10.2337/diacare.26.12.3230
Article
PubMed
Google Scholar
Liu Y, Li D, Zhang Y, Sun R, Xia M (2014) Anthocyanin increases adiponectin secretion and protects against diabetes-related endothelial dysfunction. Am J Physiol Metab 306:E975–E988. https://doi.org/10.1152/ajpendo.00699.2013
Article
CAS
Google Scholar
Luna-Vital DA, De Mejia EG (2018) Anthocyanins from purple corn activate free fatty acid-receptor 1 and glucokinase enhancing in vitro insulin secretion and hepatic glucose uptake. PLoS One 13:e0200449. https://doi.org/10.1371/journal.pone.0200449
Article
PubMed
PubMed Central
CAS
Google Scholar
Luna-Vital D, Weiss M, Gonzalez de Mejia E (2017) Anthocyanins from purple corn ameliorated tumor necrosis factor-α-induced inflammation and insulin resistance in 3T3-L1 adipocytes via activation of insulin signaling and enhanced GLUT4 translocation. Mol Nutr Food Res 61. https://doi.org/10.1002/mnfr.201700362
Luna-Vital DA, Chatham L, Juvik J, Singh V, Somavat P, De Mejia EG (2019) Activating effects of phenolics from Apache Red Zea mays L. on free fatty acid receptor 1 and glucokinase evaluated with a dual culture system with epithelial, pancreatic, and liver cells. J Agric Food Chem 67:9148–9159. https://doi.org/10.1021/acs.jafc.8b06642
Article
PubMed
CAS
Google Scholar
Määttä-Riihinen KR, Kamal-Eldin A, Törrönen AR (2004) Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family rosaceae). J Agric Food Chem 52:6178–6187. https://doi.org/10.1021/jf049450r
Article
PubMed
CAS
Google Scholar
Macz-Pop GA, Rivas-Gonzalo JC, Pérez-Alonso JJ, González-Paramás AM (2006) Natural occurrence of free anthocyanin aglycones in beans (Phaseolus vulgaris L.). Food Chem 94:448–456. https://doi.org/10.1016/j.foodchem.2004.11.038
Article
CAS
Google Scholar
Matsukawa T, Inaguma T, Han J, Villareal MO, Isoda H (2015) Cyanidin-3-glucoside derived from black soybeans ameliorate type 2 diabetes through the induction of differentiation of preadipocytes into smaller and insulin-sensitive adipocytes. J Nutr Biochem 26:860–867. https://doi.org/10.1016/j.jnutbio.2015.03.006
Article
PubMed
CAS
Google Scholar
Medjakovic S, Jungbauer A (2013) Pomegranate: a fruit that ameliorates metabolic syndrome. Food Funct 4:19–39
Article
CAS
Google Scholar
Mojica L, Berhow M, Gonzalez de Mejia E (2017) Black bean anthocyanin-rich extracts as food colorants: physicochemical stability and antidiabetes potential. Food Chem 229:628–639. https://doi.org/10.1016/j.foodchem.2017.02.124
Article
PubMed
CAS
Google Scholar
Mylnikov SV, Kokko HI, Kärenlampi SO, Oparina TI, Davies HV, Stewart D (2005) Rubus fruit juices affect lipid peroxidation in a Drosophila melanogaster model in vivo. J Agric Food Chem 53:7728–7733. https://doi.org/10.1021/jf051303l
Article
PubMed
CAS
Google Scholar
Nemes A, Homoki JR, Kiss R, Hegedus C, Kovács DD, Peitl B, Gál F, Stündl L, Szilvássy Z, Remenyik J (2019) Effect of anthocyanin-rich tart cherry extract on inflammatory mediators and adipokines involved in type 2 diabetes in a high fat diet induced obesity mouse model. Nutrients 11:1966. https://doi.org/10.3390/nu11091966
Article
PubMed Central
CAS
Google Scholar
Nickavar B, Amin G (2010) Bioassay-guided separation of an α-amylase inhibitor anthocyanin from vaccinium arctostaphylos berries. Zeitschrift fur Naturforsch - Sect C J Biosci 65(C):567–570. https://doi.org/10.1515/znc-2010-9-1006
Article
CAS
Google Scholar
Nielsen KA, Gotfredsen CH, Buch-Pedersen MJ, Ammitzbøll H, Mattsson O, Duus J, Nicholson RL (2004) Inclusions of flavonoid 3-deoxyanthocyanidins in Sorghum bicolor self-organize into spherical structures. Physiol Mol Plant Pathol 65:187–196. https://doi.org/10.1016/j.pmpp.2005.02.001
Article
CAS
Google Scholar
Nizamutdinova IT, Jin YC, Chung J, Shin SC, Lee SJ, Seo HG, Lee JH, Chang KC, Kim HJ (2009) The anti-diabetic effect of anthocyanins in streptozotocin-induced diabetic rats through glucose transporter 4 regulation and prevention of insulin resistance and pancreatic apoptosis. Mol Nutr Food Res 53:1419–1429. https://doi.org/10.1002/mnfr.200800526
Article
PubMed
CAS
Google Scholar
Novotny JA, Baer DJ, Khoo C, Gebauer SK, Charron CS (2015) Cranberry juice consumption lowers markers of cardiometabolic risk, including blood pressure and circulating C-reactive protein, triglyceride, and glucose concentrations in adults 1-4. J Nutr 145:1185–1193. https://doi.org/10.3945/jn.114.203190
Article
PubMed
CAS
Google Scholar
Ormazabal P, Scazzocchio B, Varì R, Santangelo C, D’Archivio M, Silecchia G, Iacovelli A, Giovannini C, Masella R (2018) Effect of protocatechuic acid on insulin responsiveness and inflammation in visceral adipose tissue from obese individuals: possible role for PTP1B. Int J Obes 42:2012–2021. https://doi.org/10.1038/s41366-018-0075-4
Article
CAS
Google Scholar
Ostberg-Potthoff JJ, Berger K, Richling E, Winterhalter P (2019) Activity-guided fractionation of red fruit extracts for the identification of compounds influencing glucose metabolism. Nutrients 11:1166. https://doi.org/10.3390/nu11051166
Article
PubMed Central
CAS
Google Scholar
Peixoto H, Roxo M, Krstin S, Röhrig T, Richling E, Wink M (2016) An Anthocyanin-Rich Extract of Acai (Euterpe precatoria Mart.) Increases Stress Resistance and Retards Aging-Related Markers in Caenorhabditis elegans. J Agric Food Chem 64:1283–1290. https://doi.org/10.1021/acs.jafc.5b05812
Article
PubMed
CAS
Google Scholar
Peixoto H, Roxo M, Krstin S, Wang X, Wink M (2016) Anthocyanin-rich extract of Acai (Euterpe precatoria Mart.) mediates neuroprotective activities in Caenorhabditis elegans. J Funct Foods 26:385–393. https://doi.org/10.1016/j.jff.2016.08.012
Article
CAS
Google Scholar
Petersen C, Bharat D, Cutler BR, Gholami S, Denetso C, Mueller JE, Cho JM, Kim JS, Symons JD, Anandh Babu PV (2018) Circulating metabolites of strawberry mediate reductions in vascular inflammation and endothelial dysfunction in db/db mice. Int J Cardiol 263:111–117. https://doi.org/10.1016/j.ijcard.2018.04.040
Article
PubMed
PubMed Central
Google Scholar
Petersen C, Wankhade UD, Bharat D, Wong K, Mueller JE, Chintapalli SV, Piccolo BD, Jalili T, Jia Z, Symons JD, Shankar K, Anandh Babu PV (2019) Dietary supplementation with strawberry induces marked changes in the composition and functional potential of the gut microbiome in diabetic mice. J Nutr Biochem 66:63–69. https://doi.org/10.1016/j.jnutbio.2019.01.004
Article
PubMed
PubMed Central
CAS
Google Scholar
Porter Abate J, Blackwell TK (2009) Life is short, if sweet. Cell Metab 10:338–339
Article
CAS
Google Scholar
Qin Y, Xia M, Ma J, Hao YT, Liu J, Mou HY, Cao L, Ling WH (2009) Anthocyanin supplementation improves serum LDL- and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am J Clin Nutr 90:485–492. https://doi.org/10.3945/ajcn.2009.27814
Article
PubMed
CAS
Google Scholar
Qin Y, Zhai Q, Li Y, Cao M, Xu Y, Zhao K, Wang T (2018) Cyanidin-3-O-glucoside ameliorates diabetic nephropathy through regulation of glutathione pool. Biomed Pharmacother 103:1223–1230. https://doi.org/10.1016/j.biopha.2018.04.137
Article
PubMed
CAS
Google Scholar
Ranilla LG, Huamán-Alvino C, Flores-Báez O, Aquino-Méndez EM, Chirinos R, Campos D, Sevilla R, Fuentealba C, Pedreschi R, Sarkar D, Shetty K (2019) Evaluation of phenolic antioxidant-linked in vitro bioactivity of Peruvian corn (Zea mays L.) diversity targeting for potential management of hyperglycemia and obesity. J Food Sci Technol 56:2909–2924. https://doi.org/10.1007/s13197-019-03748-z
Article
PubMed
PubMed Central
CAS
Google Scholar
Real Hernandez LM, Fan J, Johnson MH, De Mejia EG (2015) Berry phenolic compounds increase expression of hepatocyte nuclear factor-1α (HNF-1α) in Caco-2 and normal colon cells due to high affinities with transcription and dimerization domains of HNF-1α. PLoS One 10:e0138768. https://doi.org/10.1371/journal.pone.0138768
Article
PubMed
PubMed Central
CAS
Google Scholar
Rebello CJ, Burton J, Heiman M, Greenway FL (2015) Gastrointestinal microbiome modulator improves glucose tolerance in overweight and obese subjects: a randomized controlled pilot trial. J Diabetes Complicat 29:1272–1276. https://doi.org/10.1016/j.jdiacomp.2015.08.023
Article
Google Scholar
Romani A, Mulinacci N, Pinelli P, Vincieri FF, Cimato A (1999) Polyphenolic content in five tuscany cultivars of Olea europaea L. J Agric Food Chem 47:964–967. https://doi.org/10.1021/jf980264t
Article
PubMed
CAS
Google Scholar
Romani A, Vignolini P, Galardi C, Mulinacci N, Benedettelli S, Heimler D (2004) Germplasm characterization of Zolfino landraces (Phaseolus vulgaris L.) by flavonoid content. J Agric Food Chem 52:3838–3842. https://doi.org/10.1021/jf0307402
Article
PubMed
CAS
Google Scholar
Sánchez-Marzo N, Lozano-Sánchez J, de la Luz Cádiz-Gurrea M, Herranz-López M, Micol V, Segura-Carretero A (2019) Relationships Between Chemical Structure and Antioxidant Activity of Isolated Phytocompounds from Lemon Verbena. Antioxidants 8:324. https://doi.org/10.3390/antiox8080324
Article
PubMed Central
CAS
Google Scholar
Sandoval V, Femenias A, Martínez-Garza Ú, Sanz-Lamora H, Castagnini JM, Quifer-Rada P, Lamuela-Raventós RM, Marrero PF, Haro D, Relat J (2019) Lyophilized maqui (Aristotelia chilensis) berry induces browning in the subcutaneous white adipose tissue and ameliorates the insulin resistance in high fat diet-induced obese mice. Antioxidants 8:360. https://doi.org/10.3390/antiox8090360
Article
PubMed Central
CAS
Google Scholar
Sasaki R, Nishimura N, Hoshino H, Isa Y, Kadowaki M, Ichi T, Tanaka A, Nishiumi S, Fukuda I, Ashida H, Horio F, Tsuda T (2007) Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice. Biochem Pharmacol 74:1619–1627. https://doi.org/10.1016/j.bcp.2007.08.008
Article
PubMed
CAS
Google Scholar
Satija A, Bhupathiraju SN, Rimm EB, Spiegelman D, Chiuve SE, Borgi L, Willett WC, Manson JAE, Sun Q, Hu FB (2016) Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: results from three prospective cohort studies. PLoS Med 13. https://doi.org/10.1371/journal.pmed.1002039
Scazzocchio B, Varì R, Filesi C, D’Archivio M, Santangelo C, Giovannini C, Iacovelli A, Silecchia G, Volti GL, Galvano F, Masella R (2011) Cyanidin-3-O-β-glucoside and protocatechuic acid exert insulin-like effects by upregulating PPARγ activity in human omental adipocytes. Diabetes 60:2234–2244. https://doi.org/10.2337/db10-1461
Article
PubMed
PubMed Central
CAS
Google Scholar
Scazzocchio B, Varì R, Filesi C, Del Gaudio I, D’Archivio M, Santangelo C, Iacovelli A, Galvano F, Pluchinotta FR, Giovannini C, Masella R (2015) Protocatechuic acid activates key components of insulin signaling pathway mimicking insulin activity. Mol Nutr Food Res 59:1472–1481. https://doi.org/10.1002/mnfr.201400816
Article
PubMed
CAS
Google Scholar
Seymour EM, Tanone II, Urcuyo-Llanes DE, Lewis SK, Kirakosyan A, Kondoleon MG, Kaufman PB, Bolling SF (2011) Blueberry intake alters skeletal muscle and adipose tissue peroxisome proliferator-activated receptor activity and reduces insulin resistance in obese rats. J Med Food 14:1511–1518. https://doi.org/10.1089/jmf.2010.0292
Article
PubMed
CAS
Google Scholar
Sohrab G, Nasrollahzadeh J, Zand H, Amiri Z, Tohidi M, Kimiagar M (2014) Effects of pomegranate juice consumption on inflammatory markers in patients with type 2 diabetes: a randomized, placebo-controlled trial. J Res Med Sci 19:215–220
PubMed
PubMed Central
Google Scholar
Sohrab G, Angoorani P, Tohidi M, Tabibi H, Kimiagar M, Nasrollahzadeh J (2015) Pomegranate (Punicagranatum) juice decreases lipid peroxidation, but has no effect on plasma advanced glycated end-products in adults with type 2 diabetes: a randomized double-blind clinical trial. Food Nutr Res 59:1–6. https://doi.org/10.3402/fnr.v59.28551
Article
CAS
Google Scholar
Sohrab G, Ebrahimof S, Sotoudeh G, Neyestani TR, Angoorani P, Hedayati M, Siasi F (2017) Effects of pomegranate juice consumption on oxidative stress in patients with type 2 diabetes: a single-blind, randomized clinical trial. Int J Food Sci Nutr 68:249–255. https://doi.org/10.1080/09637486.2016.1229760
Article
PubMed
CAS
Google Scholar
Sohrab G, Nasrollahzadeh J, Tohidi M, Zand H, Nikpayam O (2018) Pomegranate juice increases sirtuin1 protein in peripheral blood mononuclear cell from patients with type 2 diabetes: a randomized placebo controlled clinical trial. Metab Syndr Relat Disord 16:446–451. https://doi.org/10.1089/met.2017.0146
Article
PubMed
CAS
Google Scholar
Sohrab G, Roshan H, Ebrahimof S, Nikpayam O, Sotoudeh G, Siasi F (2019) Effects of pomegranate juice consumption on blood pressure and lipid profile in patients with type 2 diabetes: a single-blind randomized clinical trial. Clin Nutr ESPEN 29:30–35. https://doi.org/10.1016/j.clnesp.2018.11.013
Article
PubMed
Google Scholar
Solverson PM, Rumpler WV, Leger JL, Redan BW, Ferruzzi MG, Baer DJ, Castonguay TW, Novotny JA (2018) Blackberry feeding increases fat oxidation and improves insulin sensitivity in overweight and obese males. Nutrients 10:1–16. https://doi.org/10.3390/nu10081048
Article
CAS
Google Scholar
Spínola V, Llorent-Martínez EJ, Castilho PC (2019) Polyphenols of Myrica faya inhibit key enzymes linked to type II diabetes and obesity and formation of advanced glycation end-products (in vitro): potential role in the prevention of diabetic complications. Food Res Int 116:1229–1238. https://doi.org/10.1016/j.foodres.2018.10.010
Article
PubMed
CAS
Google Scholar
Spínola V, Pinto J, Llorent-Martínez EJ, Tomás H, Castilho PC (2019) Evaluation of Rubus grandifolius L. (wild blackberries) activities targeting management of type-2 diabetes and obesity using in vitro models. Food Chem Toxicol 123:443–452. https://doi.org/10.1016/j.fct.2018.11.006
Article
PubMed
CAS
Google Scholar
Stote K, Corkum A, Sweeney M, Shakerley N, Kean T, Gottschall-Pass K (2019) Postprandial effects of blueberry (Vaccinium angustifolium) consumption on glucose metabolism, gastrointestinal hormone response, and perceived appetite in healthy adults: a randomized, placebo-controlled crossover trial. Nutrients 11:1–14. https://doi.org/10.3390/nu11010202
Article
CAS
Google Scholar
Strugała P, Dzydzan O, Brodyak I, Kucharska AZ, Kuropka P, Liuta M, Kaleta-Kuratewicz K, Przewodowska A, Michałowska D, Gabrielska J, Sybirna N (2019) Antidiabetic and antioxidative potential of the blue Congo variety of purple potato extract in streptozotocin-induced diabetic rats. Molecules 24:3126. https://doi.org/10.3390/molecules24173126
Article
PubMed Central
CAS
Google Scholar
Su H, Xie L, Xu Y, Ke H, Bao T, Li Y (2019) Chen W (2019) Pelargonidin-3- O-glucoside Derived from Wild Raspberry Exerts Antihyperglycemic Effect by Inducing Autophagy and Modulating Gut Microbiota. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.9b03338
Sweeny JG, Iacobucci GA (1983) Effect of substitution on the stability of 3-deoxyanthocyanidins in aqueous solutions. J Agric Food Chem 31:531–533. https://doi.org/10.1021/jf00117a017
Article
CAS
Google Scholar
Tambara AL, de Los Santos Moraes L, Dal Forno AH, Boldori JR, Gonçalves Soares AT, de Freitas RC, Mariutti LRB, Mercadante AZ, de Ávila DS, Denardin CC (2018) Purple pitanga fruit (Eugenia uniflora L.) protects against oxidative stress and increase the lifespan in Caenorhabditis elegans via the DAF-16/FOXO pathway. Food Chem Toxicol 120:639–650. https://doi.org/10.1016/j.fct.2018.07.057
Article
PubMed
CAS
Google Scholar
Thilavech T, Ngamukote S, Abeywardena M, Adisakwattana S (2015) Protective effects of cyanidin-3-rutinoside against monosaccharides-induced protein glycation and oxidation. Int J Biol Macromol 75:515–520. https://doi.org/10.1016/j.ijbiomac.2015.02.004
Article
PubMed
CAS
Google Scholar
Thilavech T, Ngamukote S, Belobrajdic D, Abeywardena M, Adisakwattana S (2016) Cyanidin-3-rutinoside attenuates methylglyoxal-induced protein glycation and DNA damage via carbonyl trapping ability and scavenging reactive oxygen species. BMC Complement Altern Med 16:138. https://doi.org/10.1186/s12906-016-1133-x
Article
PubMed
PubMed Central
CAS
Google Scholar
Tian JL, Liao XJ, Wang YH, Si X, Shu C, Gong ES, Xie X, Ran XL, Li B (2019) Identification of Cyanidin-3-arabinoside Extracted from Blueberry as a Selective Protein Tyrosine Phosphatase 1B Inhibitor. J Agric Food Chem 67:13624–13634. https://doi.org/10.1021/acs.jafc.9b06155
Article
PubMed
CAS
Google Scholar
Tissenbaum HA, Ruvkun G (1998) An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics 148:703–717
PubMed
PubMed Central
CAS
Google Scholar
Tomás-Barberán FA, Gil MI, Cremin P, Waterhouse AL, Hess-Pierce B, Kader AA (2001) HPLC-DAD-ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. J Agric Food Chem 49:4748–4760. https://doi.org/10.1021/jf0104681
Article
PubMed
CAS
Google Scholar
Tsuda T, Ueno Y, Aoki H, Koda T, Horio F, Takahashi N, Kawada T, Osawa T (2004) Anthocyanin enhances adipocytokine secretion and adipocyte-specific gene expression in isolated rat adipocytes. Biochem Biophys Res Commun 316:149–157. https://doi.org/10.1016/j.bbrc.2004.02.031
Article
PubMed
CAS
Google Scholar
Valenza A, Bonfanti C, Pasini ME, Bellosta P (2018) Anthocyanins Function as Anti-Inflammatory Agents in a Drosophila Model for Adipose Tissue Macrophage Infiltration. Biomed Res Int 2018:6413172. https://doi.org/10.1155/2018/6413172
Article
PubMed
PubMed Central
CAS
Google Scholar
Van der Sluis AA, Dekker M, De Jager A, Jongen WMF (2001) Activity and concentration of polyphenolic antioxidants in apple: effect of cultivar, harvest year, and storage conditions. J Agric Food Chem 49:3606–3613. https://doi.org/10.1021/jf001493u
Article
PubMed
CAS
Google Scholar
Wallace T, Giusti M (2015) Anthocyanins. Adv Nutr an Int Rev J 60:620–622. https://doi.org/10.3945/an.115.009233
Article
Google Scholar
Wang L, Li YM, Lei L, Liu Y, Wang X, Ma KY, Zhang C, Zhu H, Zhao Y, Chen ZY (2016) Purple sweet potato anthocyanin attenuates fat-induced mortality in Drosophila melanogaster. Exp Gerontol 82:95–103. https://doi.org/10.1016/j.exger.2016.06.006
Article
PubMed
CAS
Google Scholar
Watts JL, Ristow M (2017) Lipid and carbohydrate metabolism in Caenorhabditis elegans. Genetics 207:413–446. https://doi.org/10.1534/genetics.117.300106
Article
PubMed
PubMed Central
CAS
Google Scholar
WHO (2019) Diabetes. In: who.int. https://www.who.int/health-topics/diabetes. Accessed 23 Dec 2019
Wu X, Gu L, Prior RL, McKay S (2004) Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J Agric Food Chem 52:7846–7856. https://doi.org/10.1021/jf0486850
Article
PubMed
CAS
Google Scholar
Xiao JB, Hogger P (2014) Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Curr Med Chem 22:23–38. https://doi.org/10.2174/0929867321666140706130807
Article
CAS
Google Scholar
Xiao T, Guo Z, Sun B, Zhao Y (2017) Identification of Anthocyanins from Four Kinds of Berries and Their Inhibition Activity to α-Glycosidase and Protein Tyrosine Phosphatase 1B by HPLC-FT-ICR MS/MS. J Agric Food Chem 65:6211–6221. https://doi.org/10.1021/acs.jafc.7b02550
Article
PubMed
CAS
Google Scholar
Xiong Y, Zhang P, Warner RD, Fang Z (2019) 3-Deoxyanthocyanidin colorant: nature, health, synthesis, and food applications. Compr Rev Food Sci Food Saf 18:1533–1549
Article
CAS
Google Scholar
Yan F, Dai G, Zheng X (2016) Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice. J Nutr Biochem 36:68–80. https://doi.org/10.1016/j.jnutbio.2016.07.004
Article
PubMed
CAS
Google Scholar
Yan F, Chen X, Zheng X (2017) Protective effect of mulberry fruit anthocyanin on human hepatocyte cells (LO2) and Caenorhabditis elegans under hyperglycemic conditions. Food Res Int 102:213–224. https://doi.org/10.1016/j.foodres.2017.10.009
Article
PubMed
CAS
Google Scholar
Yan F, Chen Y, Azat R, Zheng X (2017) Mulberry Anthocyanin Extract Ameliorates Oxidative Damage in HepG2 Cells and Prolongs the Lifespan of Caenorhabditis elegans through MAPK and Nrf2 Pathways. Oxidative Med Cell Longev 2017:7956158. https://doi.org/10.1155/2017/7956158
Article
CAS
Google Scholar
Yang LL, Ling W, Yang Y, Chen Y, Tian Z, Du Z, Chen J, Xie Y, Liu Z, Yang LL (2017) Role of purified anthocyanins in improving cardiometabolic risk factors in chinese men and women with prediabetes or early untreated diabetes—A randomized controlled trial. Nutrients 9:1–14. https://doi.org/10.3390/nu9101104
Article
CAS
Google Scholar
Zhao C, Yang C, Wai STC, Zhang Y, Portillo MP, Paoli P, Wu Y, San Cheang W, Liu B, Carpéné C, Xiao J, Cao H (2019) Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus. Crit Rev Food Sci Nutr 59:830–847
Article
CAS
Google Scholar
Zheng W, Wang SY (2003) Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J Agric Food Chem 51:502–509. https://doi.org/10.1021/jf020728u
Article
PubMed
CAS
Google Scholar
Zheng YC, He H, Wei X, Ge S, Lu YH (2016) Comparison of regulation mechanisms of five mulberry ingredients on insulin secretion under oxidative stress. J Agric Food Chem 64:8763–8772. https://doi.org/10.1021/acs.jafc.6b03845
Article
PubMed
CAS
Google Scholar
Zhu W, Jia Q, Wang Y, Zhang Y, Xia M (2012) The anthocyanin cyanidin-3-O-β-glucoside, a flavonoid, increases hepatic glutathione synthesis and protects hepatocytes against reactive oxygen species during hyperglycemia: involvement of a cAMP-PKA-dependent signaling pathway. Free Radic Biol Med 52:314–327. https://doi.org/10.1016/j.freeradbiomed.2011.10.483
Article
PubMed
CAS
Google Scholar