Skip to main content

Advertisement

Log in

Low shear stress damages endothelial function through STAT1 in endothelial cells (ECs)

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Low shear stress (LSS) occurs in areas where atherosclerosis is prevalent. Many studies have revealed that signal transducer and activator of transcription 1 (STAT1) plays a significant role in cardiovascular disease. Nonetheless, the mechanism underlying the connection between STAT1 and LSS is not fully understood. The purpose of this study was to investigate the link between LSS and STAT1 in endothelial cells (ECs). Monolayer endothelial cells were stimulated or not stimulated by LSS. Protein expression and phosphorylation levels were determined by western blotting. Immunofluorescence was used to compare the protein expression differences in bifurcated and non-bifurcated human coronary arteries. Endothelial function was assessed by using a dihydroethidium assay, real-time PCR, western blotting and nitric oxide (NO)-sensitive fluorophore. Results showed that STAT1 played a key role in LSS-induced endothelium damage. Firstly, LSS activated STAT1, as evidenced by LSS-induced STAT1 (Tyr701) phosphorylation in ECs in vitro and the increased intimal STAT1 expression at bifurcation of human coronary arteries. Secondly, LSS-induced STAT1 phosphorylation was positively regulated by inhibitor of nuclear factor kappa-B kinase ε (IKKε). Additionally, LSS-promoted inflammatory factor expression was markedly reversed by silencing STAT1 (siSTAT1). LSS also increased reactive oxygen species (ROS) level and decreased endogenous NO release: however, siSTAT1 reversed these adverse effects through upregulating the antioxidant gene heme oxygenase-1(HO-1) and downregulating endothelial nitric oxide synthase (eNOS) Thr495 phosphorylation. According to our results, LSS-mediated EC injury may be associated with the activation of STAT1. Strategies designed to reduce STAT1 expression or inhibit STAT1 activation may be effective approaches for reducing the incidence of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agrawal S, Febbraio M, Podrez E, Cathcart MK, Stark GR, Chisolm GM (2007) Signal transducer and activator of transcription 1 is required for optimal foam cell formation and atherosclerotic lesion development. CIRCULATION 115(23):2939–2947. https://doi.org/10.1161/CIRCULATIONAHA.107.696922

    Article  PubMed  CAS  Google Scholar 

  2. Antoniadis AP, Stone PH (2017) Evolving understanding of the heterogeneous natural history of individual coronary artery plaques and the role of local endothelial shear stress. Curr Opin Cardiol 32(6):748–754. https://doi.org/10.1097/HCO.0000000000000459

    Article  PubMed  Google Scholar 

  3. Asakura T, Karino T (1990) Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res 66(4):1045–1066. https://doi.org/10.1161/01.RES.66.4.1045

    Article  PubMed  CAS  Google Scholar 

  4. Bach EA, Tanner JW, Marsters S, Ashkenazi A, Aguet M, Shaw AS, Schreiber RD (1996) Ligand-induced assembly and activation of the gamma interferon receptor in intact cells. Mol Cell Biol 16(6):3214–3221. https://doi.org/10.1128/mcb.16.6.3214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Balligand JL, Feron O, Dessy C (2009) eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 89(2):481–534. https://doi.org/10.1152/physrev.00042.2007

    Article  PubMed  CAS  Google Scholar 

  6. Chiu J, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91(1):327–387. https://doi.org/10.1152/physrev.00047.2009

    Article  PubMed  Google Scholar 

  7. Chmielewski S, Olejnik A, Sikorski K, Pelisek J, Blaszczyk K, Aoqui C, Nowicka H, Zernecke A, Heemann U, Wesoly J, Baumann M, Bluyssen HA (2014) STAT1-dependent signal integration between IFN gamma and TLR4 in vascular cells reflect pro-atherogenic responses in human atherosclerosis. PLoS One 9(12):e113318. https://doi.org/10.1371/journal.pone.0113318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Dale TC, Imam AM, Kerr IM, Stark GR (1989) Rapid activation by interferon alpha of a latent DNA-binding protein present in the cytoplasm of untreated cells. Proc Natl Acad Sci U S A 86(4):1203–1207. https://doi.org/10.1073/pnas.86.4.1203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hartmann P, Schober A, Weber C (2015) Chemokines and microRNAs in atherosclerosis. Cell Mol Life Sci 72(17):3253–3266. https://doi.org/10.1007/s00018-015-1925-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hsieh H, Liu C, Huang B, Tseng AH, Wang DL (2014) Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J Biomed Sci 21(1):3. https://doi.org/10.1186/1423-0127-21-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kaplan DH, Greenlund AC, Tanner JW, Shaw AS, Schreiber RD (1996) Identification of an interferon-gamma receptor alpha chain sequence required for JAK-1 binding. J Biol Chem 271(1):9–12. https://doi.org/10.1074/jbc.271.1.9

    Article  PubMed  CAS  Google Scholar 

  12. Kirchmer MN, Franco A, Albasanz-Puig A, Murray J, Yagi M, Gao L, Dong ZM, Wijelath ES (2014) Modulation of vascular smooth muscle cell phenotype by STAT-1 and STAT-3. ATHEROSCLEROSIS 234(1):169–175. https://doi.org/10.1016/j.atherosclerosis.2014.02.029

    Article  CAS  Google Scholar 

  13. Kong X, Chen L, Ye P, Wang Z, Zhang J, Ye F, Chen S (2016) The role of HYAL2 in LSS-induced glycocalyx impairment and the PKA-mediated decrease in eNOS-Ser-633 phosphorylation and nitric oxide production. Mol Biol Cell 27(25):3972–3979. https://doi.org/10.1091/mbc.E16-04-0241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kong X, Qu X, Li B, Wang Z, Chao Y, Jiang X, Wu W, Chen SL (2017) Modulation of low shear stress induced eNOS multisite phosphorylation and nitric oxide production via protein kinase and ERK1/2 signaling. Mol Med Rep 15(2):908–914. https://doi.org/10.3892/mmr.2016.6060

    Article  CAS  Google Scholar 

  15. Kotenko SV, Izotova LS, Pollack BP, Mariano TM, Donnelly RJ, Muthukumaran G, Cook JR, Garotta G, Silvennoinen O, Ihle JN, Et A (1995) Interaction between the components of the interferon gamma receptor complex. J Biol Chem 270(36):20915–20921. https://doi.org/10.1074/jbc.270.36.20915

    Article  CAS  Google Scholar 

  16. Lim WS, Timmins JM, Seimon TA, Sadler A, Kolodgie FD, Virmani R, Tabas I (2008) Signal transducer and activator of transcription-1 is critical for apoptosis in macrophages subjected to endoplasmic reticulum stress in vitro and in advanced atherosclerotic lesions in vivo. CIRCULATION 117(7):940–951. https://doi.org/10.1161/CIRCULATIONAHA.107.711275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lin C, Hsieh P, Hwang L, Lee Y, Tsai S, Tu Y, Hung Y, Liu C, Chuang Y, Liao M, Chien S, Tsai M (2018) The CCL5/CCR5 Axis promotes vascular smooth muscle cell proliferation and atherogenic phenotype switching. Cell Physiol Biochem 47(2):707–720. https://doi.org/10.1159/000490024

    Article  PubMed  CAS  Google Scholar 

  18. Manea A, Tanase LI, Raicu M, Simionescu M (2010) Jak/STAT signaling pathway regulates nox1 and nox4-based NADPH oxidase in human aortic smooth muscle cells. Arterioscler Thromb Vasc Biol 30(1):105–112. https://doi.org/10.1161/ATVBAHA.109.193896

    Article  PubMed  CAS  Google Scholar 

  19. Qu D, Wang L, Huo M, Song W, Lau CW, Xu J, Xu A, Yao X, Chiu JJ, Tian XY, Huang Y (2019) Focal TLR4 activation mediates disturbed flow-induced endothelial inflammation. Cardiovasc Res. https://doi.org/10.1093/cvr/cvz046

    Article  Google Scholar 

  20. Samady H, Eshtehardi P, McDaniel MC, Suo J, Dhawan SS, Maynard C, Timmins LH, Quyyumi AA, Giddens DP (2011) Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. CIRCULATION 124(7):779–788. https://doi.org/10.1161/CIRCULATIONAHA.111.021824

    Article  PubMed  CAS  Google Scholar 

  21. Schnittler HJ (1998) Structural and functional aspects of intercellular junctions in vascular endothelium. Basic Res Cardiol 93(Suppl 3):30–39. https://doi.org/10.1007/s003950050205

    Article  Google Scholar 

  22. Shishido K, Antoniadis AP, Takahashi S, Tsuda M, Mizuno S, Andreou I, Papafaklis MI, Coskun AU, O'Brien C, Feldman CL, Saito S, Edelman ER, Stone PH (2016) Effects of low endothelial shear stress after stent implantation on subsequent neointimal hyperplasia and clinical outcomes in humans. J Am Heart Assoc 5(9). https://doi.org/10.1161/JAHA.115.002949

  23. Siasos G, Sara JD, Zaromytidou M, Park KH, Coskun AU, Lerman LO, Oikonomou E, Maynard CC, Fotiadis D, Stefanou K, Papafaklis M, Michalis L, Feldman C, Lerman A, Stone PH (2018) Local low shear stress and endothelial dysfunction in patients with nonobstructive coronary atherosclerosis. J Am Coll Cardiol 71(19):2092–2102. https://doi.org/10.1016/j.jacc.2018.02.073

    Article  Google Scholar 

  24. Tarbell JM, Simon SI, Curry FR (2014) Mechanosensing at the vascular interface. Annu Rev Biomed Eng 16:505–532. https://doi.org/10.1146/annurev-bioeng-071813-104908

    Article  CAS  Google Scholar 

  25. Tavakolian Ferdousie V, Mohammadi M, Hassanshahi G, Khorramdelazad H, Khanamani Falahati-pour S, Mirzaei M, Allah Tavakoli M, Kamiab Z, Ahmadi Z, Vazirinejad R, Shahrabadi E, Koniari I, Kounis NG, Esmaeili NA (2017) Serum CXCL10 and CXCL12 chemokine levels are associated with the severity of coronary artery disease and coronary artery occlusion. Int J Cardiol 233:23–28. https://doi.org/10.1016/j.ijcard.2017.02.011

    Article  PubMed  Google Scholar 

  26. Tenoever BR, Ng SL, Chua MA, McWhirter SM, Garcia-Sastre A, Maniatis T (2007) Multiple functions of the IKK-related kinase IKKepsilon in interferon-mediated antiviral immunity. SCIENCE 315(5816):1274–1278. https://doi.org/10.1126/science.1136567

    Article  PubMed  CAS  Google Scholar 

  27. Torella D, Curcio A, Gasparri C, Galuppo V, De Serio D, Surace FC, Cavaliere AL, Leone A, Coppola C, Ellison GM, Indolfi C (2007) Fludarabine prevents smooth muscle proliferation in vitro and neointimal hyperplasia in vivo through specific inhibition of STAT-1 activation. Am J Physiol Heart Circ Physiol 292(6):H2935–H2943. https://doi.org/10.1152/ajpheart.00887.2006

    Article  PubMed  CAS  Google Scholar 

  28. Tsai Y, Hsieh H, Liao F, Ni C, Chao Y, Hsieh C, Wang D (2007) Laminar flow attenuates interferon-induced inflammatory responses in endothelial cells. Cardiovasc Res 74(3):497–505. https://doi.org/10.1016/j.cardiores.2007.02.030

    Article  PubMed  CAS  Google Scholar 

  29. Wang F, Wang Z, Pu J, Xie X, Gao X, Gu Y, Chen S, Zhang J (2019) Oscillating flow promotes inflammation through the TLR2-TAK1-IKK2 signalling pathway in human umbilical vein endothelial cell (HUVECs). Life Sci 224:212–221. https://doi.org/10.1016/j.lfs.2019.03.033

    Article  PubMed  CAS  Google Scholar 

  30. Winter C, Silvestre-Roig C, Ortega-Gomez A, Lemnitzer P, Poelman H, Schumski A, Winter J, Drechsler M, de Jong R, Immler R, Sperandio M, Hristov M, Zeller T, Nicolaes GAF, Weber C, Viola JR, Hidalgo A, Scheiermann C, Soehnlein O (2018) Chrono-pharmacological targeting of the CCL2-CCR2 axis ameliorates atherosclerosis. Cell Metab 28(1):175–182. https://doi.org/10.1016/j.cmet.2018.05.002

    Article  PubMed  CAS  Google Scholar 

  31. Wragg JW, Durant S, McGettrick HM, Sample KM, Egginton S, Bicknell R (2014) Shear stress regulated gene expression and angiogenesis in vascular endothelium. MICROCIRCULATION 21(4):290–300. https://doi.org/10.1111/micc.12119

    Article  PubMed  CAS  Google Scholar 

  32. Zakharova N, Lymar ES, Yang E, Malik S, Zhang JJ, Roeder RG, Darnell JJ (2003) Distinct transcriptional activation functions of STAT1alpha and STAT1beta on DNA and chromatin templates. J Biol Chem 278(44):43067–43073. https://doi.org/10.1074/jbc.M308166200

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

We acknowledge the National Natural Science Foundation of China (NSFC-81770441 and NSFC-81770342) for supporting this study.

Author information

Authors and Affiliations

Authors

Contributions

ZLL and WF performed the in vitro experiment, analysed the echo data and drafted the manuscript. YHF aided in collecting tissues and analysing the data. WF analysed the data and edited the manuscript. ZJJ and CSL designed and oversaw the study and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Junjie Zhang or Shaoliang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and consent to participate

Compliance with ethical guidelines.

Consent for publication

Consent for publication is not applicable.

Availability of data and materials

All relevant data are within the paper and its Supporting Information files.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• Low shear stress activates IKKε-STAT1 signalling pathway.

• STAT1 is involved in endothelial inflammation in response to LSS.

• STAT1 contributes to LSS-induced increased ROS level and decreased NO release.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Wang, F., Yang, H. et al. Low shear stress damages endothelial function through STAT1 in endothelial cells (ECs). J Physiol Biochem 76, 147–157 (2020). https://doi.org/10.1007/s13105-020-00729-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-020-00729-1

Keywords

Navigation