Skip to main content
Log in

Simulated air dives induce superoxide, nitric oxide, peroxynitrite, and Ca2+ alterations in endothelial cells

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Human diving is known to induce endothelial dysfunction. The aim of this study was to decipher the mechanism of ROS production during diving through the measure of mitochondrial calcium concentration, peroxynitrite, NO°, and superoxide towards better understanding of dive-induced endothelial dysfunction. Air diving simulation using bovine arterial endothelial cells (compression rate 101 kPa/min to 808 kPa, time at depth 45 min) was performed in a system allowing real-time fluorescent measurement. During compression, the cells showed increased mitochondrial superoxide, peroxynitrite, and mitochondrial calcium, and decreased NO° concentration. MnTBAP (peroxynitrite scavenger) suppressed superoxide, recovered NO° production and promoted stronger calcium influx. Superoxide and peroxynitrite were inhibited by L-NIO (eNOS inhibitor), but were further increased by spermine-NONOate (NO° donor). L-NIO induced stronger calcium influx than spermine-NONOate or simple diving. The superoxide and peroxynitrite were also inhibited by ruthenium red (blocker of mitochondrial Ca2+ uniporter), but were increased by CGP (an inhibitor of mitochondrial Na+-Ca2+ exchange). Reactive oxygen and nitrogen species changes are associated, together with calcium mitochondrial storage, with endothelial cell dysfunction during simulated diving. Peroxynitrite is involved in NO° loss, possibly through the attenuation of eNOS and by increasing superoxide which combines with NO° and forms more peroxynitrite. In the field of diving physiology, this study is the first to unveil a part of the cellular mechanisms of ROS production during diving and confirms that diving-induced loss of NO° is linked to superoxide and peroxynitrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

APF:

3′-(p-Aminophenyl) fluorescein

BH4 :

Tetrahydrobiopterin

CGP:

CGP 37157

DCS:

Decompression sickness

eNOS:

Endothelial nitric oxide synthase

nNOS:

Neuronal nitric oxide synthase

ETC:

Electron transport chain

L-NIO:

L-N5-(1-Iminoethyl) ornithine, dihydrochloride

MnTBAP:

Mn(III) tetrakis (4-benzoic acid) porphyrin chloride

ROS:

Reactive oxygen species

RR:

Ruthenium red

SE:

Standard error

SCUBA:

Self-contained underwater breathing apparatus

References

  1. Adam SA (2016) Nuclear protein transport in digitonin permeabilized cells. Methods Mol Biol 1411:479–487

    PubMed  CAS  Google Scholar 

  2. Adam SA, Marr RS, Gerace L (1990) Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J Cell Biol 111:807–816

    PubMed  CAS  Google Scholar 

  3. Akopova O, Kotsiuruba A, Korkach Y, Kolchinskaya L, Nosar V, Gavenauskas B, Serebrovska Z, Mankovska I, Sagach V (2016) The effect of NO donor on calcium uptake and reactive nitrogen species production in mitochondria. Cell Physiol Biochem 39:193–204

    PubMed  CAS  Google Scholar 

  4. Batinić-Haberle I, Cuzzocrea S, Rebouças JS, Ferrer-Sueta G, Mazzon E, Di Paola R, Radi R, Spasojević I, Benov L, Salvemini D (2009) Pure MnTBAP selectively scavenges peroxynitrite over superoxide: comparison of pure and commercial MnTBAP samples to MnTE-2-PyP in two models of oxidative stress injury, an SOD-specific Escherichia coli model and carrageenan-induced pleurisy. Free Radic Biol Med 46:192–201

    PubMed  Google Scholar 

  5. Bove AA (1996) Medical aspects of sport diving. Med Sci Sports Exerc 28:591–595

    PubMed  CAS  Google Scholar 

  6. Bringold U, Ghafourifar P, Richter C (2000) Peroxynitrite formed by mitochondrial NO° synthase promotes mitochondrial Ca2+ release. Free Radic Biol Med 29:343–348

    PubMed  CAS  Google Scholar 

  7. Brubakk AO, Duplancic D, Valic Z, Palada I, Obad A, Bakovic D, Wisloff U, Dujic Z (2005) A single air dive reduces arterial endothelial function in man. J Physiol 566:901–906

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Burwell LS, Nadtochiy SM, Tompkins AJ, Young S, Brookes PS (2006) Direct evidence for S-nitrosation of mitochondrial complex I. Biochem J 394:627–634

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, Camello PJ (2006) Mitochondrial reactive oxygen species and Ca2+ signaling. Am J Phys Cell Phys 291:C1082–C1088

    CAS  Google Scholar 

  10. Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–306

    PubMed  CAS  Google Scholar 

  11. Castro L, Rodriguez M, Radi R (1994) Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 269:29409–29415

    PubMed  CAS  Google Scholar 

  12. Ceaser EK, Ramachandran A, Levonen AL, Arley-Usmar VM (2003) Oxidized low-density lipoprotein and 15-deoxy-delta 12,14-PGJ2 increase mitochondrial complex I activity in endothelial cells. Am J Physiol Heart Circ Physiol 285:H2298–H2308

    PubMed  CAS  Google Scholar 

  13. Cialoni D, Brizzolari A, Samaja M, Pieri M, Marroni A (2019) Altered venous blood nitric oxide levels at depth and related bubble formation during scuba diving. Front Physiol 10:57

    PubMed  PubMed Central  Google Scholar 

  14. Clementi E, Brown GC, Feelisch M, Moncada S (1998) Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci U S A 95:7631–7636

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Cooper CE, Davies NA, Psychoulis M, Canevari L, Bates TE, Dobbie MS, Casley CS, Sharpe MA (2003) Nitric oxide and peroxynitrite cause irreversible increases in the K(m) for oxygen of mitochondrial cytochrome oxidase: in vitro and in vivo studies. Biochim Biophys Acta 1607:27–34

    PubMed  CAS  Google Scholar 

  16. Dahm CC, Moore K, Murphy MP (2006) Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria. J Biol Chem 281:10056–10065

    PubMed  CAS  Google Scholar 

  17. Dedkova EN, Blatter LA (2009) Characteristics and function of cardiac mitochondrial nitric oxide synthase. J Physiol 587(Pt 4):851–872

    PubMed  CAS  Google Scholar 

  18. Dedkova EN, Ji X, Lipsius SL, Blatter LA (2004) Mitochondrial calcium uptake stimulates nitric oxide production in mitochondria of bovine vascular endothelial cells. Am J Phys Cell Phys 286:C406–C415

    CAS  Google Scholar 

  19. Doubt TJ (1996) Cardiovascular and thermal responses to SCUBA diving. Med Sci Sports Exerc 28:581–586

    PubMed  CAS  Google Scholar 

  20. Eckenhoff RG, Olstad CS, Carrod G (1990) Human dose-response relationship for decompression and endogenous bubble formation. J Appl Physiol 69:914–918

    PubMed  CAS  Google Scholar 

  21. Eftedal I, Ljubkovic M, Flatberg A, Jørgensen A, Brubakk AO, Dujic Z (2013) Acute and potentially persistent effects of scuba diving on the blood transcriptome of experienced divers. Physiol Genomics 45:965–972

    PubMed  CAS  Google Scholar 

  22. Erusalimsky JD, Moncada S (2007) Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler Thromb Vasc Biol 27:2524–2531

    PubMed  CAS  Google Scholar 

  23. García JA, Ortiz F, Miana J, Doerrier C, Fernández-Ortiz M, Rusanova I, Escames G, García JJ, Acuña-Castroviejo D (2017) Contribution of inducible and neuronal nitric oxide synthases to mitochondrial damage and melatonin rescue in LPS-treated mice. J Physiol Biochem 73:235–244

    PubMed  Google Scholar 

  24. Ghafourifar P, Richter C (1997) Nitric oxide synthase activity in mitochondria. FEBS Lett 418:291–296

    PubMed  CAS  Google Scholar 

  25. Ghafourifar P, Richter C (1999) Mitochondrial nitric oxide synthase regulates mitochondrial matrix pH. Biol Chem 380:1025–1028

    PubMed  CAS  Google Scholar 

  26. Guerrero F, Thioub S, Goanvec C, Theunissen S, Feray A, Balestra C, Mansourati J (2013) Effect of tetrahydrobiopterin and exercise training on endothelium-dependent vasorelaxation in SHR. J Physiol Biochem 69:277–287

    PubMed  CAS  Google Scholar 

  27. Hotta Y, Otsuka-Murakami H, Fujita M, Nakagawa J, Yajima M, Liu W, Ishikawa N, Kawai N, Masumizu T, Kohno M (1999) Protective role of nitric oxide synthase against ischemia-reperfusion injury in guinea pig myocardial mitochondria. Eur J Pharmacol 380:37–48

    PubMed  CAS  Google Scholar 

  28. Jang DH, Owiredu S, Ranganathan A, Eckmann DM (2018) Acute decompression following simulated dive conditions alters mitochondrial respiration and motility. Am J Phys Cell Phys 315:C699–C705

    CAS  Google Scholar 

  29. Kohlhaas M, Nickel AG, Bergem S, Casadei B, Laufs U, Maack C (2017) Endogenous nitric oxide formation in cardiac myocytes does not control respiration during β-adrenergic stimulation. J Physiol 595:3781–3798

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 5:834–842

    PubMed  CAS  Google Scholar 

  31. Kuzkaya N, Weissmann N, Harrison DG, Dikalov S (2003) Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric oxide synthase. J Biol Chem 278:22546–22554

    PubMed  CAS  Google Scholar 

  32. Lacza Z, Snipes JA, Zhang J, Horváth EM, Figueroa JP, Szabó C, Busija DW (2003) Mitochondrial nitric oxide synthase is not eNOS, nNOS or iNOS. Free Radic Biol Med 35:1217–1228

    PubMed  CAS  Google Scholar 

  33. Lambrechts K, Pontier JM, Balestra C, Mazur A, Wang Q, Buzzacott P, Theron M, Mansourati J, Guerrero F (2013) Effect of a single, open-sea, air scuba dive on human micro- and macrovascular function. Eur J Appl Physiol 113:2637–2645

    PubMed  Google Scholar 

  34. Madden LA, Laden G (2009) Gas bubbles may not be the underlying cause of decompression illness - The at-depth endothelial dysfunction hypothesis. Med Hypotheses 72:389–392

    PubMed  Google Scholar 

  35. Marinovic J, Ljubkovic M, Breskovic T, Gunjaca G, Obad A, Modun D, Bilopavlovic N, Tsikas D, Dujic Z (2012) Effects of successive air and nitrox dives on human vascular function. Eur J Appl Physiol 112:2131–2137

    PubMed  CAS  Google Scholar 

  36. Münzel T, Gori T, Bruno RM, Taddei S (2010) Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J 31:2741–2748

    PubMed  Google Scholar 

  37. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    PubMed  CAS  Google Scholar 

  38. Obad A, Palada I, Valic Z, Dujic Z (2006) Long term vitamin C and E treatment and endothelial function in scuba-diving. FASEB J 20:A1249

    Google Scholar 

  39. Obad A, Palada I, Valic Z, Ivancev V, Bakovic D, Wisloff U, Brubakk AO, Dujic Z (2007a) The effects of acute oral antioxidants on diving-induced alterations in human cardiovascular function. J Physiol 578:859–870

    PubMed  CAS  Google Scholar 

  40. Obad A, Valic Z, Palada I, Brubakk AO, Modun D, Dujic Z (2007b) Antioxidant pretreatment and reduced arterial endothelial dysfunction after diving. Aviat Space Environ Med 78:1114–1120

    PubMed  CAS  Google Scholar 

  41. Obad A, Marinovic J, Ljubkovic M, Breskovic T, Modun D, Boban M, Dujic Z (2010) Successive deep dives impair endothelial function and enhance oxidative stress in man. Clin Physiol Funct Imaging 30:432–438

    PubMed  Google Scholar 

  42. Packer MA, Murphy MP (1994) Peroxynitrite causes calcium efflux from mitochondria which is prevented by Cyclosporin A. FEBS Lett 345:237–240

    PubMed  CAS  Google Scholar 

  43. Quintero M, Colombo SL, Godfrey A, Moncada S (2006) Mitochondria as signaling organelles in the vascular endothelium. Proc Natl Acad Sci U S A 103:5379–5384

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Radi R, Rodriguez M, Castro L, Telleri R (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308:89–95

    PubMed  CAS  Google Scholar 

  45. Radi R, Cassina A, Hodara R, Quijano C, Castro L (2002) Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med 33:1451–1464

    PubMed  CAS  Google Scholar 

  46. Rebouças JS, Spasojevi I, Batinic-Haberle I (2008) Quality of potent Mn porphyrin-based SOD mimics and peroxynitrite scavengers for pre-clinical mechanistic/therapeutic purposes. J Pharm Biomed Anal 48:1046–1049

    PubMed  PubMed Central  Google Scholar 

  47. Sobolewski P, Kandel J, Klinger AL, Eckmann DM (2011) Air bubble contact with endothelial cells in vitro induces calcium influx and IP3 dependent release of calcium stores. Am J Phys Cell Phys 301:C679–C686

    CAS  Google Scholar 

  48. Sureda A, Batle JM, Ferrer MD, Mestre-Alfaro A, Tur JA, Pons A (2012) Scuba diving activates vascular antioxidant system. Int J Sports Med 33:531–536

    PubMed  CAS  Google Scholar 

  49. Theunissen S, Sponsiello N, Rozloznik M, Germonpré P, Guerrero F, Cialoni D, Balestra C (2013) Oxidative stress in breath-hold divers after repetitive dives. Diving Hyperb Med 43:63–66

    PubMed  Google Scholar 

  50. Vann RD (2004) Diving at the no-stop limits: chamber trials of flying after diving. In: Vann RD (ed) Flying after diving Workshop. Divers Alert Network, Durham, pp 32–37

    Google Scholar 

  51. Vann RD, Butler FK, Mitchell SJ, Moon RE (2011) Decompression illness. Lancet 377:153–164

    PubMed  Google Scholar 

  52. Venkatakrishnan P, Nakayasu ES, Almeida IC, Miller RT (2009) Absence of nitric-oxide synthase in sequentially purified rat liver mitochondria. J Biol Chem 284:19843–19855

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Wang Q, Belhomme M, Guerrero F, Mazur A, Lambrechts K, Theron M (2013) Diving under a microscope--a new simple and versatile in vitro diving device for fluorescence and confocal microscopy allowing the controls of hydrostatic pressure, gas pressures, and kinetics of gas saturation. Microsc Microanal 19:608–616

    PubMed  CAS  Google Scholar 

  54. Wang Q, Guerrero F, Mazur A, Lambrechts K, Buzzacott P, Belhomme M, Theron M (2015) Reactive oxygen species, mitochondria, and endothelial cell death during in vitro simulated dives. Med Sci Sports Exerc 47(7):1362–1371

    PubMed  CAS  Google Scholar 

  55. Widlansky ME, Gutterman DD (2011) Regulation of endothelial function by mitochondrial reactive oxygen species. Antioxid Redox Signal 15:1517–1530

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Yang M, Barak OF, Dujuc Z, Madden D, Bhopale VM, Bhullar J, Thom SR (2015) Ascorbic acid supplementation diminishes microparticle elevations and neutrophil activation following SCUBA diving. Am J Phys Regul Integr Comp Phys 309:R338–R344

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the technical assistance given by Patrick Calves and Stella Roy. We would like to thank Vanessa Simpson for her valuable English assistance.

Funding

The research leading to these results received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FRP/2007-2013/ under REA grant agreement no. 264816. This work was financed by the FP7 People (Marie Curie Action).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaël Theron.

Ethics declarations

This work did not include human or animal experiments.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

Simulated air dives induce ROS RNS increases in endothelial cells

Simulated air dives increase mitochondrial Ca2+ and reduce NO° in endothelial cell

ROS and RNS production are linked with endothelial dysfunction during diving

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Guerrero, F., Lambrechts, K. et al. Simulated air dives induce superoxide, nitric oxide, peroxynitrite, and Ca2+ alterations in endothelial cells. J Physiol Biochem 76, 61–72 (2020). https://doi.org/10.1007/s13105-019-00715-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-019-00715-2

Keywords

Navigation