Skip to main content
Log in

Serotonin and its metabolites reduce oxidative stress in murine RAW264.7 macrophages and prevent inflammation

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In this study, we focused on comparing the effects of serotonin and its metabolites on the functions of RAW264.7 cells (emphasis on oxidative burst and production of nitric oxide and cytokines), thereby expanding the scope of existing knowledge with advent of novel findings in this field. Changes in production of reactive oxygen species (ROS) by RAW264.7 cells after treatment with serotonin, N-acetylserotonin and melatonin were determined using the chemiluminescence (CL) assay. To exclude the direct scavenging effects of the studied compounds on the CL response, the antioxidant properties of all respective compounds were measured using TRAP and amperometrical method. Nitric oxide (NO) production was measured by Griess reagent and inducible NO synthase (iNOS) expression by Western blot. Cytokine production was assessed using the Mouse Cytokine Panel A Array kit and ELISA. We showed that all tested compounds were able to reduce oxidative stress, as well as inhibit production of inflammatory cytokines by macrophages. Of the tested compounds, serotonin and N-acetylserotonin were markedly better antioxidants than melatonin. In comparison, other effects of tested compounds were very similar. It can be concluded that antioxidant capacity of tested compounds is a major advantage in the early stages of inflammation. Since plasma concentrations of N-acetylserotonin and melatonin are lower than serotonin, it can be deduced that serotonin plays a key role in modulation of inflammation and the regulatory functions of immune cells, while also protecting cells against oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aparicio-Soto M, Alarcon-de-la-Lastra C, Cardeno A, Sanchez-Fidalgo S, Sanchez-Hidalgo M (2014) Melatonin modulates microsomal PGE synthase 1 and NF-E2-related factor-2-regulated antioxidant enzyme expression in LPS-induced murine peritoneal macrophages. Br J Pharmacol 171:134–144. https://doi.org/10.1111/bph.12428

    Article  PubMed  CAS  Google Scholar 

  2. Arias-Negrete S, Jimenez-Romero LA, Solis-Martinez MO, Ramirez-Emiliano J, Avila EE, Cuellar-Mata P (2004) Indirect determination of nitric oxide production by reduction of nitrate with a freeze-thawing-resistant nitrate reductase from Escherichia coli MC1061. Anal Biochem 328:14–21. https://doi.org/10.1016/j.ab.2004.01.026

    Article  PubMed  CAS  Google Scholar 

  3. Aune TM, McGrath KM, Sarr T, Bombara MP, Kelley KA (1993) Expression of 5HT1a receptors on activated human T cells. Regulation of cyclic AMP levels and T cell proliferation by 5-hydroxytryptamine. J Immunol 151:1175–1183

    PubMed  CAS  Google Scholar 

  4. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    Article  CAS  Google Scholar 

  5. Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916. https://doi.org/10.1038/ni1001-907

    Article  PubMed  CAS  Google Scholar 

  6. Bogdan C (2015) Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol 36:161–178. https://doi.org/10.1016/j.it.2015.01.003

    Article  PubMed  CAS  Google Scholar 

  7. Bogdan C, Rollinghoff M, Diefenbach A (2000) The role of nitric oxide in innate immunity. Immunol Rev 173:17–26

    Article  CAS  Google Scholar 

  8. Calvo JR, Gonzalez-Yanes C, Maldonado MD (2013) The role of melatonin in the cells of the innate immunity: a review. J Pineal Res 55:103–120. https://doi.org/10.1111/jpi.12075

    Article  PubMed  CAS  Google Scholar 

  9. Carrillo-Vico A, Calvo JR, Abreu P, Lardone PJ, Garcia-Maurino S, Reiter RJ, Guerrero JM (2004) Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance. FASEB J 18:537–539. https://doi.org/10.1096/fj.03-0694fje

    Article  PubMed  CAS  Google Scholar 

  10. Carrillo-Vico A, Guerrero JM, Lardone PJ, Reiter RJ (2005) A review of the multiple actions of melatonin on the immune system. Endocrine 27:189–200. https://doi.org/10.1385/ENDO:27:2:189

    Article  PubMed  CAS  Google Scholar 

  11. Carrillo-Vico A, Lardone PJ, Alvarez-Sanchez N, Rodriguez-Rodriguez A, Guerrero JM (2013) Melatonin: buffering the immune system. Int J Mol Sci 14:8638–8683. https://doi.org/10.3390/ijms14048638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ciz M, Komrskova D, Pracharova L, Okenkova K, Cizova H, Moravcova A, Jancinova V, Petrikova M, Lojek A, Nosal R (2007) Serotonin modulates the oxidative burst of human phagocytes via various mechanisms. Platelets 18:583–590. https://doi.org/10.1080/09537100701471865

    Article  PubMed  CAS  Google Scholar 

  13. Cloez-Tayarani I, Petit-Bertron AF, Venters HD, Cavaillon JM (2003) Differential effect of serotonin on cytokine production in lipopolysaccharide-stimulated human peripheral blood mononuclear cells: involvement of 5-hydroxytryptamine2A receptors. Int Immunol 15:233–240

    Article  CAS  Google Scholar 

  14. Coleman JW (2001) Nitric oxide in immunity and inflammation. Int Immunopharmacol 1:1397–1406

    Article  CAS  Google Scholar 

  15. Dahlstroem A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I Demonstration of monoamines in the cell bodies of brain stem neurons. Acta physiologica Scandinavica Supplementum:SUPPL 232:231–255

    Google Scholar 

  16. Denev P, Kratchanova M, Ciz M, Lojek A, Vasicek O, Blazheva D, Nedelcheva P, Vojtek L, Hyrsl P (2014) Antioxidant, antimicrobial and neutrophil-modulating activities of herb extracts. Acta Biochim Pol 61:359–367

    Article  Google Scholar 

  17. Deng WG, Tang ST, Tseng HP, Wu KK (2006) Melatonin suppresses macrophage cyclooxygenase-2 and inducible nitric oxide synthase expression by inhibiting p52 acetylation and binding. Blood 108:518–524. https://doi.org/10.1182/blood-2005-09-3691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Duerschmied D, Suidan GL, Demers M, Herr N, Carbo C, Brill A, Cifuni SM, Mauler M, Cicko S, Bader M, Idzko M, Bode C, Wagner DD (2013) Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood 121:1008–1015. https://doi.org/10.1182/blood-2012-06-437392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Durk T, Panther E, Muller T, Sorichter S, Ferrari D, Pizzirani C, Di Virgilio F, Myrtek D, Norgauer J, Idzko M (2005) 5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes. Int Immunol 17:599–606. https://doi.org/10.1093/intimm/dxh242

    Article  PubMed  CAS  Google Scholar 

  20. Endo Y, Shibazaki M, Nakamura M, Takada H (1997) Contrasting effects of lipopolysaccharides (endotoxins) from oral black-pigmented bacteria and Enterobacteriaceae on platelets, a major source of serotonin, and on histamine-forming enzyme in mice. J Infect Dis 175:1404–1412

    Article  CAS  Google Scholar 

  21. Freire-Garabal M, Nunez MJ, Balboa J, Lopez-Delgado P, Gallego R, Garcia-Caballero T, Fernandez-Roel MD, Brenlla J, Rey-Mendez M (2003) Serotonin upregulates the activity of phagocytosis through 5-HT1A receptors. Br J Pharmacol 139:457–463. https://doi.org/10.1038/sj.bjp.0705188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Georgiev YN, Paulsen BS, Kiyohara H, Ciz M, Ognyanov MH, Vasicek O, Rise F, Denev PN, Lojek A, Batsalova TG, Dzhambazov BM, Yamada H, Lund R, Barsett H, Krastanov AI, Yanakieva IZ, Kratchanova MG (2017) Tilia tomentosa pectins exhibit dual mode of action on phagocytes as beta-glucuronic acid monomers are abundant in their rhamnogalacturonans I. Carbohydr Polym 175:178–191. https://doi.org/10.1016/j.carbpol.2017.07.073

    Article  PubMed  CAS  Google Scholar 

  23. Gilad E, Wong HR, Zingarelli B, Virag L, O’Connor M, Salzman AL, Szabo C (1998) Melatonin inhibits expression of the inducible isoform of nitric oxide synthase in murine macrophages: role of inhibition of NFkappaB activation. FASEB J 12:685–693

    Article  CAS  Google Scholar 

  24. Hardeland R (2018) Melatonin and inflammation-story of a double-edged blade. J Pineal Res 65:e12525. https://doi.org/10.1111/jpi.12525

    Article  PubMed  CAS  Google Scholar 

  25. Helander A, Beck O, Borg S (1992) Determination of urinary 5-hydroxytryptophol by high-performance liquid chromatography with electrochemical detection. J Chromatogr 579:340–345

    Article  CAS  Google Scholar 

  26. Hellstrand K, Hermodsson S (1993) Serotonergic 5-HT1A receptors regulate a cell contact-mediated interaction between natural killer cells and monocytes. Scand J Immunol 37:7–18

    Article  CAS  Google Scholar 

  27. Hellstrand K, Kylefjord H, Asea A, Hermodsson S (1992) Regulation of the natural killer cell response to interferon-alpha by biogenic amines. J Interf Res 12:199–206

    Article  CAS  Google Scholar 

  28. Herr N, Bode C, Duerschmied D (2017) The effects of serotonin in immune cells. Front Cardiovasc Med 4:48. https://doi.org/10.3389/fcvm.2017.00048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Huang SH, Liao CL, Chen SJ, Shi LG, Lin L, Chen YW, Cheng CP, Sytwu HK, Shang ST, Lin GJ (2019) Melatonin possesses an anti-influenza potential through its immune modulatory effect. J Funct Foods 58:189–198. https://doi.org/10.1016/j.jff.2019.04.062

    Article  CAS  Google Scholar 

  30. Huether G, Schuff-Werner P (1996) Platelet serotonin acts as a locally releasable antioxidant. Adv Exp Med Biol 398:299–306

    Article  CAS  Google Scholar 

  31. Hung AS, Tsui TY, Lam JC, Wai MS, Chan WM, Yew DT (2011) Serotonin and its receptors in the human CNS with new findings - a mini review. Curr Med Chem 18:5281–5288

    Article  CAS  Google Scholar 

  32. Hyeon JY, Choi EY, Choe SH, Park HR, Choi JI, Choi IS, Kim SJ (2017) Agomelatine, a MT1/MT2 melatonergic receptor agonist with serotonin 5-HT2C receptor antagonistic properties, suppresses Prevotella intermedia lipopolysaccharide-induced production of proinflammatory mediators in murine macrophages. Arch Oral Biol 82:11–18. https://doi.org/10.1016/j.archoralbio.2017.05.015

    Article  PubMed  CAS  Google Scholar 

  33. Jackson JC, Walker RF, Brooks WH, Roszman TL (1988) Specific uptake of serotonin by murine macrophages. Life Sci 42:1641–1650

    Article  CAS  Google Scholar 

  34. Jeon HL, Yoo JM, Lee BD, Lee SJ, Sohn EJ, Kim MR (2016) Anti-inflammatory and antioxidant actions of N-arachidonoyl serotonin in RAW264.7 cells. Pharmacology 97:195–206. https://doi.org/10.1159/000443739

    Article  PubMed  CAS  Google Scholar 

  35. Katoh N, Soga F, Nara T, Tamagawa-Mineoka R, Nin M, Kotani H, Masuda K, Kishimoto S (2006) Effect of serotonin on the differentiation of human monocytes into dendritic cells. Clin Exp Immunol 146:354–361. https://doi.org/10.1111/j.1365-2249.2006.03197.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kema IP, de Vries EG, Muskiet FA (2000) Clinical chemistry of serotonin and metabolites. J Chromatogr B Biomed Sci Appl 747:33–48

    Article  CAS  Google Scholar 

  37. Khan NA, Poisson JP (1999) 5-HT3 receptor-channels coupled with Na+ influx in human T cells: role in T cell activation. J Neuroimmunol 99:53–60

    Article  CAS  Google Scholar 

  38. Klemm P, Hecker M, Stockhausen H, Wu CC, Thiemermann C (1995) Inhibition by N-acetyl-5-hydroxytryptamine of nitric oxide synthase expression in cultured cells and in the anaesthetized rat. Br J Pharmacol 115:1175–1181

    Article  CAS  Google Scholar 

  39. Kubera M, Kenis G, Bosmans E, Scharpe S, Maes M (2000) Effects of serotonin and serotonergic agonists and antagonists on the production of interferon-gamma and interleukin-10. Neuropsychopharmacology 23:89–98. https://doi.org/10.1016/S0893-133X(99)00150-5

    Article  PubMed  CAS  Google Scholar 

  40. Kubera M, Maes M, Kenis G, Kim YK, Lason W (2005) Effects of serotonin and serotonergic agonists and antagonists on the production of tumor necrosis factor alpha and interleukin-6. Psychiatry Res 134:251–258. https://doi.org/10.1016/j.psychres.2004.01.014

    Article  PubMed  CAS  Google Scholar 

  41. Lojek A, Ciz M, Pekarova M, Ambrozova G, Vasicek O, Moravcova J, Kubala L, Drabikova K, Jancinova V, Perecko T, Pecivova J, Macickova T, Nosal R (2011) Modulation of metabolic activity of phagocytes by antihistamines. Interdiscip Toxicol 4:15–19. https://doi.org/10.2478/v10102-011-0004-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Markus RP, Ferreira ZS, Fernandes PA, Cecon E (2007) The immune-pineal axis: a shuttle between endocrine and paracrine melatonin sources. Neuroimmunomodulation 14:126–133 https://doi.org/10.1159/000110635

    Article  CAS  Google Scholar 

  43. Marra A, McGrane TJ, Henson CP, Pandharipande PP (2019) Melatonin in critical care. Crit Care Clin 35:329–340. https://doi.org/10.1016/j.ccc.2018.11.008

    Article  PubMed  Google Scholar 

  44. Martins E Jr, Ferreira AC, Skorupa AL, Afeche SC, Cipolla-Neto J, Costa Rosa LF (2004) Tryptophan consumption and indoleamines production by peritoneal cavity macrophages. J Leukoc Biol 75:1116–1121. https://doi.org/10.1189/jlb.1203614

    Article  PubMed  CAS  Google Scholar 

  45. McIsaac W, Page IH (1959) The metabolism of serotonin (5-hydroxytryptamine). J Biol Chem 234:858–864

    PubMed  CAS  Google Scholar 

  46. McNicol A, Israels SJ (1999) Platelet dense granules: structure, function and implications for haemostasis. Thromb Res 95:1–18

    Article  CAS  Google Scholar 

  47. Mohammad-Zadeh LF, Moses L, Gwaltney-Brant SM (2008) Serotonin: a review. J Vet Pharmacol Ther 31:187–199. https://doi.org/10.1111/j.1365-2885.2008.00944.x

    Article  PubMed  CAS  Google Scholar 

  48. Moradkhani F, Moloudizargari M, Fallah M, Asghari N, Heidari Khoei H, Asghari MH (2019) Immunoregulatory role of melatonin in cancer. J Cell Physiol. https://doi.org/10.1002/jcp.29036

    Article  CAS  Google Scholar 

  49. Morrissette DA, Stahl SM (2014) Modulating the serotonin system in the treatment of major depressive disorder. CNS spectrums 19 Suppl 1:57-67; quiz 54-57, 68. https://doi.org/10.1017/S1092852914000613

    Article  Google Scholar 

  50. Mossner R, Lesch KP (1998) Role of serotonin in the immune system and in neuroimmune interactions. Brain Behav Immun 12:249–271. https://doi.org/10.1006/brbi.1998.0532

    Article  PubMed  CAS  Google Scholar 

  51. Muller T, Durk T, Blumenthal B, Grimm M, Cicko S, Panther E, Sorichter S, Herouy Y, Di Virgilio F, Ferrari D, Norgauer J, Idzko M (2009) 5-hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vitro and in vivo. PLoS One 4:e6453. https://doi.org/10.1371/journal.pone.0006453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Nichols DE, Nichols CD (2008) Serotonin receptors. Chem Rev 108:1614–1641. https://doi.org/10.1021/cr0782240

    Article  PubMed  CAS  Google Scholar 

  53. Noda Y, Mori A, Liburdy R, Packer L (1999) Melatonin and its precursors scavenge nitric oxide. J Pineal Res 27:159–163

    Article  CAS  Google Scholar 

  54. Noda M, Higashida H, Aoki S, Wada K (2004) Multiple signal transduction pathways mediated by 5-HT receptors. Mol Neurobiol 29:31–39. https://doi.org/10.1385/MN:29:1:31

    Article  PubMed  CAS  Google Scholar 

  55. Olivier B (2015) Serotonin: a never-ending story. Eur J Pharmacol 753:2–18. https://doi.org/10.1016/j.ejphar.2014.10.031

    Article  PubMed  CAS  Google Scholar 

  56. Oxenkrug G (2005) Antioxidant effects of N-acetylserotonin: possible mechanisms and clinical implications. Ann N Y Acad Sci 1053:334–347. https://doi.org/10.1196/annals.1344.029

    Article  PubMed  CAS  Google Scholar 

  57. Pekarova M, Lojek A, Martiskova H, Vasicek O, Bino L, Klinke A, Lau D, Kuchta R, Kadlec J, Vrba R, Kubala L (2011) New role for L-arginine in regulation of inducible nitric-oxide-synthase-derived superoxide anion production in raw 264.7 macrophages. TheScientificWorldJournal 11:2443–2457. https://doi.org/10.1100/2011/321979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Perianayagam MC, Oxenkrug GF, Jaber BL (2005) Immune-modulating effects of melatonin, N-acetylserotonin, and N-acetyldopamine. Ann N Y Acad Sci 1053:386–393. https://doi.org/10.1196/annals.1344.033

    Article  PubMed  CAS  Google Scholar 

  59. Pletscher A (1968) Metabolism, transfer and storage of 5-hydroxytryptamine in blood platelets. Br J Pharmacol Chemother 32:1–16

    Article  CAS  Google Scholar 

  60. Pontes GN, Cardoso EC, Carneiro-Sampaio MM, Markus RP (2006) Injury switches melatonin production source from endocrine (pineal) to paracrine (phagocytes) - melatonin in human colostrum and colostrum phagocytes. J Pineal Res 41:136–141. https://doi.org/10.1111/j.1600-079X.2006.00345.x

    Article  PubMed  CAS  Google Scholar 

  61. Pracharova L, Okenkova K, Lojek A, Ciz M (2010) Serotonin and its 5-HT(2) receptor agonist DOI hydrochloride inhibit the oxidative burst in total leukocytes but not in isolated neutrophils. Life Sci 86:518–523. https://doi.org/10.1016/j.lfs.2010.02.003

    Article  PubMed  CAS  Google Scholar 

  62. Radi R, Cosgrove TP, Beckman JS, Freeman BA (1993) Peroxynitrite-induced luminol chemiluminescence. Biochem. J 290(Pt 1):51–57

    Article  CAS  Google Scholar 

  63. Schuff-Werner P, Splettstoesser W (1999) Antioxidative properties of serotonin and the bactericidal function of polymorphonuclear phagocytes. Adv Exp Med Biol 467:321–325

    Article  CAS  Google Scholar 

  64. Schuff-Werner P, Splettstosser W, Schmidt F, Huether G (1995) Serotonin acts as a radical scavenger and is oxidized to a dimer during the respiratory burst of human mononuclear and polymorphonuclear phagocytes. Eur J Clin Investig 25:477–484

    Article  CAS  Google Scholar 

  65. Shajib MS, Khan WI (2015) The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol (Oxford) 213:561–574. https://doi.org/10.1111/apha.12430

    Article  CAS  Google Scholar 

  66. Shimpo M, Ikeda U, Maeda Y, Kurosaki K, Okada K, Saito T, Shimada K (1997) Serotonin inhibits nitric oxide synthesis in rat vascular smooth muscle cells stimulated with interleukin-1. Eur J Pharmacol 338:97–104

    Article  CAS  Google Scholar 

  67. Sternberg EM, Trial J, Parker CW (1986) Effect of serotonin on murine macrophages: suppression of Ia expression by serotonin and its reversal by 5-HT2 serotonergic receptor antagonists. J Immunol 137:276–282

    PubMed  CAS  Google Scholar 

  68. Sternberg EM, Wedner HJ, Leung MK, Parker CW (1987) Effect of serotonin (5-HT) and other monoamines on murine macrophages: modulation of interferon-gamma induced phagocytosis. J Immunol 138:4360–4365

    PubMed  CAS  Google Scholar 

  69. Tamura EK, Cecon E, Monteiro AW, Silva CL, Markus RP (2009) Melatonin inhibits LPS-induced NO production in rat endothelial cells. J Pineal Res 46:268–274. https://doi.org/10.1111/j.1600-079X.2008.00657.x

    Article  PubMed  CAS  Google Scholar 

  70. Tops M, Russo S, Boksem MA, Tucker DM (2009) Serotonin: modulator of a drive to withdraw. Brain Cogn 71:427–436. https://doi.org/10.1016/j.bandc.2009.03.009

    Article  PubMed  Google Scholar 

  71. Vasicek O, Lojek A, Jancinova V, Nosal R, Ciz M (2014) Role of histamine receptors in the effects of histamine on the production of reactive oxygen species by whole blood phagocytes. Life Sci 100:67–72

    Article  CAS  Google Scholar 

  72. Walther DJ, Peter JU, Winter S, Holtje M, Paulmann N, Grohmann M, Vowinckel J, Alamo-Bethencourt V, Wilhelm CS, Ahnert-Hilger G, Bader M (2003) Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release. Cell 115:851–862

    Article  CAS  Google Scholar 

  73. Williams JG, Bernstein S, Prager M (1998) Effect of melatonin on activated macrophage TNF, IL-6, and reactive oxygen intermediates. Shock 9:406–411

    Article  CAS  Google Scholar 

  74. Williams LM, Ricchetti G, Sarma U, Smallie T, Foxwell BM (2004) Interleukin-10 suppression of myeloid cell activation--a continuing puzzle. Immunology 113:281–292. https://doi.org/10.1111/j.1365-2567.2004.01988.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Wolfler A, Abuja PM, Schauenstein K, Liebmann PM (1999) N-acetylserotonin is a better extra- and intracellular antioxidant than melatonin. FEBS Lett 449:206–210

    Article  CAS  Google Scholar 

  76. Wu H, Denna TH, Storkersen JN, Gerriets VA (2019) Beyond a neurotransmitter: the role of serotonin in inflammation and immunity. Pharmacol Res 140:100–114. https://doi.org/10.1016/j.phrs.2018.06.015

    Article  PubMed  CAS  Google Scholar 

  77. Xia Y, Chen S, Zeng S, Zhao Y, Zhu C, Deng B, Zhu G, Yin Y, Wang W, Hardeland R, Ren W (2019) Melatonin in macrophage biology: current understanding and future perspectives. J Pineal Res 66:e12547. https://doi.org/10.1111/jpi.12547

    Article  PubMed  CAS  Google Scholar 

  78. Yin J, Albert RH, Tretiakova AP, Jameson BA (2006) 5-HT(1B) receptors play a prominent role in the proliferation of T-lymphocytes. J Neuroimmunol 181:68–81. https://doi.org/10.1016/j.jneuroim.2006.08.004

    Article  PubMed  CAS  Google Scholar 

  79. Yu B, Becnel J, Zerfaoui M, Rohatgi R, Boulares AH, Nichols CD (2008) Serotonin 5-hydroxytryptamine(2A) receptor activation suppresses tumor necrosis factor-alpha-induced inflammation with extraordinary potency. J Pharmacol Exp Ther 327:316–323. https://doi.org/10.1124/jpet.108.143461

    Article  PubMed  CAS  Google Scholar 

  80. Zhang S, Li W, Gao Q, Wei T (2004) Effect of melatonin on the generation of nitric oxide in murine macrophages. Eur J Pharmacol 501:25–30. https://doi.org/10.1016/j.ejphar.2004.08.015

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sumeet Gulati for checking the English of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the design and implementation of the research and to the analysis of the results. M.C. supervised the project. O.V. performed the majority of experiments and designed the figures. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Milan Číž.

Ethics declarations

Conflict of interest

The study was supported by the MEYS of the Czech Republic (LD14030).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points:

Serotonin and related compounds reduce oxidative stress in macrophages.

Serotonin modulates inflammation mainly via its antioxidative properties.

Serotonin and N-acetylserotonin are better antioxidants than melatonin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vašíček, O., Lojek, A. & Číž, M. Serotonin and its metabolites reduce oxidative stress in murine RAW264.7 macrophages and prevent inflammation. J Physiol Biochem 76, 49–60 (2020). https://doi.org/10.1007/s13105-019-00714-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-019-00714-3

Keywords

Navigation