Skip to main content

Impact of different methods of induction of cellular hypoxia: focus on protein homeostasis signaling pathways and morphology of C2C12 skeletal muscle cells differentiated into myotubes

Abstract

Hypoxia, occurring in several pathologies, has deleterious effects on skeletal muscle, in particular on protein homeostasis. Different induction methods of hypoxia are commonly used in cellular models to investigate the alterations of muscular function consecutive to hypoxic stress. However, a consensus is not clearly established concerning hypoxia induction methodology. Our aim was to compare oxygen deprivation with chemically induced hypoxia using cobalt chloride (CoCl2) or desferrioxamine (DFO) on C2C12 myotubes which were either cultured in hypoxia chamber at an oxygen level of 4% or treated with CoCl2 or DFO. For each method of hypoxia induction, we determined their impact on muscle cell morphology and on expression or activation status of key signaling proteins of synthesis and degradation pathways. The expression of HIF-1α increased whatever the method of hypoxia induction. Myotube diameter and protein content decreased exclusively for C2C12 myotubes submitted to physiological hypoxia (4% O2) or treated with CoCl2. Results were correlated with a hypophosphorylation of key proteins regulated synthesis pathway (Akt, GSK3-β and P70S6K). Similarly, the phosphorylation of FoxO1 decreased and the autophagy-related LC3-II was overexpressed with 4% O2 and CoCl2 conditions. Our results demonstrated that in vitro oxygen deprivation and the use of mimetic agent such as CoCl2, unlike DFO, induced similar responses on myotube morphology and atrophy/hypertrophy markers. Thus, physiological hypoxia or its artificial induction using CoCl2 can be used to understand finely the molecular changes in skeletal muscle cells and to evaluate new therapeutics for hypoxia-related muscle disorders.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Caron MA, Thériault ME, Paré MÈ, Maltais F, Debigaré R (2009) Hypoxia alters contractile protein homeostasis in L6 myotubes. FEBS Lett 583(9):1528–1534. https://doi.org/10.1016/j.febslet.2009.04.006

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Chaillou T, Lanner JT (2016) Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. FASEB J 30(12):3929–3941. https://doi.org/10.1096/fj.201600757R

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Chen R, Jiang T, She Y, Xu J, Li C, Zhou S, Liu S (2017) Effects of cobalt chloride, a hypoxia-mimetic agent, on autophagy and atrophy in skeletal C2C12 myotubes. Biomed Res Int 2017. https://doi.org/10.1155/2017/7097580

  4. 4.

    Choy MK, Movassagh M, Bennett MR, Foo RS (2010) PKB/Akt activation inhibits p53-mediated HIF1A degradation that is independent of MDM2. J Cell Physiol 222(3):635–639. https://doi.org/10.1002/jcp.21980

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Ciafrè SA, Niola F, Giorda E, Farace MG, Caporossi D (2007) CoCl2-simulated hypoxia in skeletal muscle cell lines: role of free radicals in gene up-regulation and induction of apoptosis. Free Radic Res 41(4):391–401. https://doi.org/10.1080/10715760601096799

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Costes F, Gosker H, Feasson L, Desgeorges M, Kelders M, Castells J, Freyssenet D (2015) Impaired exercise training-induced muscle fiber hypertrophy and Akt/mTOR pathway activation in hypoxemic patients with COPD. J Appl Physiol 118(8):1040–1049. https://doi.org/10.1152/japplphysiol.00557.2014

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    de Theije CC, Langen RC, Lamers WH, Schols AM, Köhler SE (2013) Distinct responses of protein turnover regulatory pathways in hypoxia-and semistarvation-induced muscle atrophy. Am J Phys Lung Cell Mol Phys 305(1):L82–L91. https://doi.org/10.1152/ajplung.00354.2012

    CAS  Article  Google Scholar 

  8. 8.

    Debigaré R, Marquis K, Côté CH, Tremblay RR, Michaud A, LeBlanc P, Maltais F (2003) Catabolic/anabolic balance and muscle wasting in patients with COPD. Chest 124(1):83–89. https://doi.org/10.1378/chest.124.1.83

    Article  PubMed  Google Scholar 

  9. 9.

    Deldicque L, Francaux M (2013) Acute vs chronic hypoxia: what are the consequences for skeletal muscle mass? Cell Mol Exerc Physiol 2(1):e5. https://doi.org/10.7457/cmpe.2049-419

    Article  Google Scholar 

  10. 10.

    Di Carlo A, De Mori R, Martelli F, Pompilio G, Capogrossi MC, Germani A (2004) Hypoxia inhibits myogenic differentiation through accelerated MyoD degradation. J Biol Chem 279(16):16332–16338. https://doi.org/10.1074/jbc.M313931200

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Dziegala M, Kasztura M, Kobak K, Bania J, Banasiak W, Ponikowski P, Jankowska EA (2016) Influence of the availability of iron during hypoxia on the genes associated with apoptotic activity and local iron metabolism in rat H9C2 cardiomyocytes and L6G8C5 skeletal myocytes. Mol Med Rep 14(4):3969–3977. https://doi.org/10.3892/mmr.2016.5705

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Egerman MA, Glass DJ (2014) Signaling pathways controlling skeletal muscle mass. Crit Rev Biochem Mol Biol 49(1):59–68. https://doi.org/10.3109/10409238.2013.857291

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Favier FB, Costes F, Defour A, Bonnefoy R, Lefai E, Baugé S, Freyssenet D (2010) Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia. Am J Phys Regul Integr Comp Phys 298(6):R1659–R1666. https://doi.org/10.1152/ajpregu.00550.2009

    CAS  Article  Google Scholar 

  14. 14.

    Guo Y, Gosker HR, Schols AM, Kapchinsky S, Bourbeau J, Sandri M, Hussain SN (2013) Autophagy in locomotor muscles of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 188(11):1313–1320. https://doi.org/10.1164/rccm.201304-0732OC

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Hayot M, Rodriguez J, Vernus B, Carnac G, Jean E, Allen D, Bonnieu A (2011) Myostatin up-regulation is associated with the skeletal muscle response to hypoxic stimuli. Mol Cell Endocrinol 332(1–2):38–47. https://doi.org/10.1016/j.mce.2010.09.008

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Huang BW, Miyazawa M, Tsuji Y (2014) Distinct regulatory mechanisms of the human ferritin gene by hypoxia and hypoxia mimetic cobalt chloride at the transcriptional and post-transcriptional levels. Cell Signal 26(12):2702–2709. https://doi.org/10.1016/j.cellsig.2014.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Ji W, Wang L, He S, Yan L, Li T, Wang J et al (2018) Effects of acute hypoxia exposure with different durations on activation of Nrf2-ARE pathway in mouse skeletal muscle. PLoS One 13(12):e0208474. https://doi.org/10.1371/journal.pone.0208474

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Karovic O, Tonazzini I, Rebola N, Edström E, Lövdahl C, Fredholm BB, Daré E (2007) Toxic effects of cobalt in primary cultures of mouse astrocytes: similarities with hypoxia and role of HIF-1α. Biochem Pharmacol 73(5):694–708. https://doi.org/10.1016/j.bcp.2006.11.008

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Kobak K, Kasztura M, Dziegala M, Bania J, Kapuśniak V, Banasiak W, Jankowska EA (2018) Iron limitation promotes the atrophy of skeletal myocytes, whereas iron supplementation prevents this process in the hypoxic conditions. Int J Mol Med 41(5):2678–2686. https://doi.org/10.3892/ijmm.2018.3481

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Langen RC, Gosker HR, Remels AH, Schols AM (2013) Triggers and mechanisms of skeletal muscle wasting in chronic obstructive pulmonary disease. Int J Biochem Cell Biol 45(10):2245–2256. https://doi.org/10.1016/j.biocel.2013.06.015

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Launay T, Hagström L, Lottin-Divoux S, Marchant D, Quidu P, Favret F, Beaudry M (2010) Blunting effect of hypoxia on the proliferation and differentiation of human primary and rat L6 myoblasts is not counteracted by Epo. Cell Prolif 43(1):1–8. https://doi.org/10.1111/j.1365-2184.2009.00648.x

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Léger B, Cartoni R, Praz M, Lamon S, Dériaz O, Crettenand A, Russell AP (2006) Akt signalling through GSK-3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol 576(3):923–933. https://doi.org/10.1113/jphysiol.2006.116715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Li M, Tan J, Miao Y, Lei P, Zhang Q (2015) The dual role of autophagy under hypoxia-involvement of interaction between autophagy and apoptosis. Apoptosis 20(6):769–777. https://doi.org/10.1007/s10495-015-1110-8

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Marabita M, Baraldo M, Solagna F, Ceelen JJ, Sartori R, Nolte H, Blaauw (2016) S6K1 is required for increasing skeletal muscle force during hypertrophy. Cell Rep 17(2):501–513. https://doi.org/10.1016/j.celrep.2016.09.020

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Marquis K, Debigaré R, Lacasse Y, LeBlanc P, Jobin J, Carrier G, Maltais F (2002) Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166(6):809–813. https://doi.org/10.1164/rccm.2107031

    Article  PubMed  Google Scholar 

  26. 26.

    Martin NR, Aguilar-Agon K, Robinson GP, Player DJ, Turner MC, Myers SD, Lewis MP (2017) Hypoxia impairs muscle function and reduces myotube size in tissue engineered skeletal muscle. J Cell Biochem 118(9):2599–2605. https://doi.org/10.1002/jcb.25982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Pisani DF, Dechesne CA (2005) Skeletal muscle HIF-1α expression is dependent on muscle fiber type. J Gen Physiol 126(2):173–178. https://doi.org/10.1085/jgp.200509265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Pomiès P, Rodriguez J, Blaquière M, Sedraoui S, Gouzi F, Carnac G, Hayot M (2015) Reduced myotube diameter, atrophic signalling and elevated oxidative stress in cultured satellite cells from COPD patients. J Cell Mol Med 19(1):175–186. https://doi.org/10.1111/jcmm.12390

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Remels AH, Gosker HR, Langen RC, Schols AM (2012) The mechanisms of cachexia underlying muscle dysfunction in COPD. J Appl Physiol 114(9):1253–1262. https://doi.org/10.1152/japplphysiol.00790.2012

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Ren K, Crouzier T, Roy C, Picart C (2008) Polyelectrolyte multilayer films of controlled stiffness modulate myoblast cell differentiation. Adv Funct Mater 18(9):1378–1389. https://doi.org/10.1002/adfm.200701297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Richardson RS, Duteil S, Wary C, Wray DW, Hoff J, Carlier PG (2006) Human skeletal muscle intracellular oxygenation: the impact of ambient oxygen availability. J Physiol 571(2):415–424. https://doi.org/10.1113/jphysiol.2005.102327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Rovetta F, Stacchiotti A, Faggi F, Catalani S, Apostoli P, Fanzani A, Aleo MF (2013) Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes. Toxicol Appl Pharmacol 271(2):196–205. https://doi.org/10.1016/j.taap.2013.05.005

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Sandri M (2013) Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol 45(10):2121–2129. https://doi.org/10.1016/j.biocel.2013.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Scaringi R, Piccoli M, Papini N, Cirillo F, Conforti E, Bergante S, Menicanti L (2013) NEU3 sialidase is activated under hypoxia and protects skeletal muscle cells from apoptosis through the activation of the epidermal growth factor receptor signaling pathway and the hypoxia-inducible factor (HIF)-1α. J Biol Chem 288(5):3153–3162. https://doi.org/10.1074/jbc.M112.404327

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Zanchi NE, Lancha AH (2008) Mechanical stimuli of skeletal muscle: implications on mTOR/p70s6k and protein synthesis. Eur J Appl Physiol 102(3):253–263. https://doi.org/10.1007/s00421-007-0588-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Amandine Girard and Matthias Lambert for their technical assistance.

Author information

Affiliations

Authors

Contributions

Samir Bensaid: Conceived, designed and performed the experiments, analysed the data and wrote the paper; Julie Fourneau: contributed to acquisition and analysis of the data; Claudine Fabre: conceived the experiments and wrote the paper; Caroline Cieniewski-Bernard: conceived and designed the experiments, performed the experiments, analysed the data and wrote the paper.

Corresponding author

Correspondence to Caroline Cieniewski-Bernard.

Ethics declarations

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Informed consent

Not concerned.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bensaid, S., Fabre, C., Fourneau, J. et al. Impact of different methods of induction of cellular hypoxia: focus on protein homeostasis signaling pathways and morphology of C2C12 skeletal muscle cells differentiated into myotubes. J Physiol Biochem 75, 367–377 (2019). https://doi.org/10.1007/s13105-019-00687-3

Download citation

Keywords

  • Hypoxia
  • Protein homeostasis
  • Myotube
  • Atrophy
  • Cobalt chloride
  • Desferrioxamine