α2,6-Sialylation promotes immune escape in hepatocarcinoma cells by regulating T cell functions and CD147/MMP signaling

  • Liping Wang
  • Shijun Li
  • Xiao Yu
  • Yang Han
  • Yinshuang Wu
  • Shidan Wang
  • Xixi Chen
  • Jianing ZhangEmail author
  • Shujing WangEmail author
Original Article


Altered glycosylation is a common feature of cancer cells and plays an important role in tumor progression. β-Galactoside α2-6-sialyltransferase 1 (ST6Gal-I) is the critical sialyltransferase responsible for the addition of α2-6-sialic acid to the terminal N-glycans on the cell surface. However, the functions and mechanism of ST6Gal-I in tumor immune escape remain poorly understood. Here, we found that ST6Gal-I overexpression promoted hepatocarcinoma cell proliferation, migration, and immune escape by increasing the levels of CD147, MMP9, MMP2, and MMP7. When CD8+ T cells were co-cultured with cell lines expressing different levels of ST6Gal-I, we found that ST6Gal-I upregulation inhibited the T cell proliferation and increased the secretion of IL-10 and TGF-β1, while secretion of IFN-γ and TNF-α was diminished. In a syngeneic tumor transplant model, ST6Gal-I upregulated Hca-P. In addition, Hepa1-6 cells formed significantly larger tumors and suppressed intratumoral penetration by CD8+ T cells. In combination, these results suggest that ST6Gal-I promotes the immune escape of hepatocarcinoma cells in the tumor microenvironment and highlight the importance of assessing ST6Gal-I status for immunotherapies.


ST6Gal-I Immune escape T cell HCC CD147 


Author contributions

Wang L. conceived and designed the study. Wang L., Li S., Yu X., Han Y., Wu Y., Wang S., and Chen X. performed the experiments. Wang L. and Li S. wrote the paper. Zhang J. and Wang S. reviewed and edited the manuscript. All authors read and approved the manuscript.

Funding information

This research was supported by grants from the National Natural Science Foundation of China (No.31470799 and No.31570802), the Natural Science Foundation of Liaoning Province (No. 20170540288), and the Special Fund of Dalian city for Distinguished Young Scholars (2017RJ07).

Compliance with ethical standards

The study protocol conformed to the principles of the Declaration of Helsinki and was approved by the Ethics Committee of The First Affiliated Hospital of Dalian Medical University, Dalian City, P.R. China

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Bresalier RS, Rockwell RW, Dahiya R, Duh QY, Kim YS (1990) Cell surface sialoprotein alterations in metastatic murine colon cancer cell lines selected in an animal model for colon cancer metastasis. Cancer Res 50:1299–1307Google Scholar
  2. 2.
    Bruns H, Petrulionis M, Schultze D, Al Saeedi M, Lin S, Yamanaka K, Ambrazevicius M, Strupas K, Schemmer P (2014) Glycine inhibits angiogenic signaling in human hepatocellular carcinoma cells. Amino Acids 46:969–976CrossRefGoogle Scholar
  3. 3.
    Chen X, Wang L, Zhao Y, Yuan S, Wu Q, Zhu X, Niang B, Wang S, Zhang J (2016) ST6Gal-I modulates docetaxel sensitivity in human hepatocarcinoma cells via the p38 MAPK/caspase pathway. Oncotarget 7:51955–51964Google Scholar
  4. 4.
    Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, Luo R, Feng J, Ye S, Yang TS, Xu J, Sun Y, Liang H, Liu J, Wang J, Tak WY, Pan H, Burock K, Zou J, Voliotis D, Guan Z (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10:25–34CrossRefGoogle Scholar
  5. 5.
    Chow MT, Moller A, Smyth MJ (2012) Inflammation and immune surveillance in cancer. Semin Cancer Biol 22:23–32CrossRefGoogle Scholar
  6. 6.
    Dall’Olio F, Chiricolo M (2001) Sialyltransferases in cancer. Glycoconj J 18:841–850CrossRefGoogle Scholar
  7. 7.
    Dall’Olio F, Chiricolo M, D’Errico A, Gruppioni E, Altimari A, Fiorentino M, Grigioni WF (2004) Expression of beta-galactoside alpha2,6 sialyltransferase and of alpha2,6-sialylated glycoconjugates in normal human liver, hepatocarcinoma, and cirrhosis. Glycobiology 14:39–49CrossRefGoogle Scholar
  8. 8.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386CrossRefGoogle Scholar
  9. 9.
    Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911CrossRefGoogle Scholar
  10. 10.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  11. 11.
    Huang L, Xu AM, Peng Q (2015) CD147 and MMP-9 expressions in type II/III adenocarcinoma of esophagogastric junction and their clinicopathological significances. Int J Clin Exp Pathol 8:1929–1937Google Scholar
  12. 12.
    Kennedy KM, Dewhirst MW (2010) Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol 6:127–148CrossRefGoogle Scholar
  13. 13.
    Lee JK, Capanu M, O’Reilly EM, Ma J, Chou JF, Shia J, Katz SS, Gansukh B, Reidy-Lagunes D, Segal NH, Yu KH, Chung KY, Saltz LB, Abou-Alfa GK (2013) A phase II study of gemcitabine and cisplatin plus sorafenib in patients with advanced biliary adenocarcinomas. Br J Cancer 109:915–919CrossRefGoogle Scholar
  14. 14.
    Li R, Huang L, Guo H, Toole BP (2001) Basigin (murine EMMPRIN) stimulates matrix metalloproteinase production by fibroblasts. J Cell Physiol 186:371–379CrossRefGoogle Scholar
  15. 15.
    Lin S, Kemmner W, Grigull S, Schlag PM (2002) Cell surface alpha 2,6 sialylation affects adhesion of breast carcinoma cells. Exp Cell Res 276:101–110CrossRefGoogle Scholar
  16. 16.
    Lin S, Hoffmann K, Schemmer P (2012) Treatment of hepatocellular carcinoma: a systematic review. Liver Cancer 1:144–158CrossRefGoogle Scholar
  17. 17.
    Lu J, Isaji T, Im S, Fukuda T, Hashii N, Takakura D, Kawasaki N, Gu J (2014) Beta-galactoside alpha2,6-sialyltranferase 1 promotes transforming growth factor-beta-mediated epithelial-mesenchymal transition. J Biol Chem 289:34627–34641CrossRefGoogle Scholar
  18. 18.
    Mizukoshi E, Nakamoto Y, Arai K, Yamashita T, Sakai A, Sakai Y, Kagaya T, Yamashita T, Honda M, Kaneko S (2011) Comparative analysis of various tumor-associated antigen-specific t-cell responses in patients with hepatocellular carcinoma. Hepatology 53:1206–1216CrossRefGoogle Scholar
  19. 19.
    Perdicchio M, Cornelissen LA, Streng-Ouwehand I, Engels S, Verstege MI, Boon L, Geerts D, van Kooyk Y, Unger WW (2016) Tumor sialylation impedes T cell mediated anti-tumor responses while promoting tumor associated-regulatory T cells. Oncotarget 7:8771–8782CrossRefGoogle Scholar
  20. 20.
    Rivoltini L, Carrabba M, Huber V, Castelli C, Novellino L, Dalerba P, Mortarini R, Arancia G, Anichini A, Fais S, Parmiani G (2002) Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction. Immunol Rev 188:97–113CrossRefGoogle Scholar
  21. 21.
    Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570CrossRefGoogle Scholar
  22. 22.
    Schultz MJ, Swindall AF, Bellis SL (2012) Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev 31:501–518CrossRefGoogle Scholar
  23. 23.
    Schultz MJ, Swindall AF, Wright JW, Sztul ES, Landen CN, Bellis SL (2013) ST6Gal-I sialyltransferase confers cisplatin resistance in ovarian tumor cells. J Ovarian Res 6:25CrossRefGoogle Scholar
  24. 24.
    Swindall AF, Bellis SL (2011) Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. J Biol Chem 286:22982–22990CrossRefGoogle Scholar
  25. 25.
    Swindall AF, Londono-Joshi AI, Schultz MJ, Fineberg N, Buchsbaum DJ, Bellis SL (2013) ST6Gal-I protein expression is upregulated in human epithelial tumors and correlates with stem cell markers in normal tissues and colon cancer cell lines. Cancer Res 73:2368–2378CrossRefGoogle Scholar
  26. 26.
    Tang W, Chang SB, Hemler ME (2004) Links between CD147 function, glycosylation, and caveolin-1. Mol Biol Cell 15:4043–4050CrossRefGoogle Scholar
  27. 27.
    Thomas MB, O’Beirne JP, Furuse J, Chan AT, Abou-Alfa G, Johnson P (2008) Systemic therapy for hepatocellular carcinoma: cytotoxic chemotherapy, targeted therapy and immunotherapy. Ann Surg Oncol 15:1008–1014CrossRefGoogle Scholar
  28. 28.
    Topfer K, Kempe S, Muller N, Schmitz M, Bachmann M, Cartellieri M, Schackert G, Temme A (2011) Tumor evasion from T cell surveillance. J Biomed Biotechnol 2011:918471CrossRefGoogle Scholar
  29. 29.
    Wei A, Fan B, Zhao Y, Zhang H, Wang L, Yu X, Yuan Q, Yang D, Wang S (2016) ST6Gal-I overexpression facilitates prostate cancer progression via the PI3K/Akt/GSK-3beta/beta-catenin signaling pathway. Oncotarget 7:65374–65388Google Scholar
  30. 30.
    Wiedmann MW, Mossner J (2010) Molecular targeted therapy of biliary tract cancer--results of the first clinical studies. Curr Drug Targets 11:834–850CrossRefGoogle Scholar
  31. 31.
    Yu S, Zhang L, Li N, Fan J, Liu L, Zhang J, Wang S (2012) Caveolin-1 up-regulates ST6Gal-I to promote the adhesive capability of mouse hepatocarcinoma cells to fibronectin via FAK-mediated adhesion signaling. Biochem Biophys Res Commun 427:506–512CrossRefGoogle Scholar
  32. 32.
    Yuan CH, Sun XM, Zhu CL, Liu SP, Wu L, Chen H, Feng MH, Wu K, Wang FB (2015) Amphiregulin activates regulatory T lymphocytes and suppresses CD8+ T cell-mediated anti-tumor response in hepatocellular carcinoma cells. Oncotarget 6:32138–32153Google Scholar

Copyright information

© University of Navarra 2019

Authors and Affiliations

  • Liping Wang
    • 1
    • 2
  • Shijun Li
    • 3
  • Xiao Yu
    • 4
  • Yang Han
    • 1
  • Yinshuang Wu
    • 1
  • Shidan Wang
    • 1
  • Xixi Chen
    • 2
  • Jianing Zhang
    • 2
    Email author
  • Shujing Wang
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular Biology, Institute of GlycobiologyDalian Medical UniversityDalianChina
  2. 2.School of Life Science and MedicineDalian University of TechnologyPanjinChina
  3. 3.Department of inspectionFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
  4. 4.Department of PathologyDalian Medical UniversityDalianChina

Personalised recommendations