Skip to main content

Advertisement

Log in

Regulatory roles of miR-155 and let-7b on the expression of inflammation-related genes in THP-1 cells: effects of fatty acids

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The main aim of this investigation was to study the regulatory roles of let-7b and miR-155-3p on the expression of inflammation-associated genes in monocytes, macrophages, and lipopolysaccharide (LPS)-activated macrophages (AcM). A second goal was to analyze the potential modulatory roles of different fatty acids, including oleic, palmitic, eicosapentaenoic (EPA), and docosahexaenoic (DHA), on the expression of these miRNAs in the three cell types. This hypothesis was tested in human acute monocytic leukemia cells (THP-1), which were differentiated into macrophages with 2-O-tetradecanoylphorbol-13-acetate (TPA) and further activated with LPS for 24 h. Monocytes, macrophages, and AcM were transfected with a negative control, or mimics for miR-155-3p and miR-let-7b-5p. The expression of both miRNAs and some proinflammatory genes was analyzed by qRT-PCR. Interestingly, let-7b mimic reduced the expression of IL6 and TNF in monocytes, and SERPINE1 expression in LPS-activated macrophages. However, IL6, TNF, and SERPINE1 were upregulated in macrophages by let-7b mimic. IL6 expression was higher in the three types of cells after transfecting with miR-155-3p mimic. Similarly, expression of SERPINE1 was increased by miR-155-3p mimic in monocytes and macrophages. However, TLR4 was downregulated by miR-155-3p in monocytes and macrophages. Regarding the effects of the different fatty acids, oleic acid increased the expression of let-7b in macrophages and AcM and also increased the expression of miR-155 in monocytes when compared with DHA but not when compared with non-treated cells. Overall, these results suggest anti- and proinflammatory roles of let-7b and miR-155-3p in THP-1 cells, respectively, although these outcomes are strongly dependent on the cell type. Noteworthy, oleic acid might exert beneficial anti-inflammatory effects in immune cells (i.e., non-activated and LPS-activated macrophages) by upregulating the expression of let-7b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arango D, Diosa-Toro M, Rojas-Hernandez LS, Cooperstone JL, Schwartz SJ, Mo X, Jiang J, Schmittgen TD, Doseff AI (2015) Dietary apigenin reduces LPS-induced expression of miR-155 restoring immune balance during inflammation. Mol Nutr Food Res 59:763–772. https://doi.org/10.1002/mnfr.201400705

    Article  CAS  PubMed  Google Scholar 

  2. Bao MH, Feng X, Zhang YW, Lou XY, Cheng Y, Zhou HH (2013) Let-7 in cardiovascular diseases, heart development and cardiovascular differentiation from stem cells. Int J Mol Sci 14:23086–23102. https://doi.org/10.3390/ijms141123086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ceppi M, Pereira PM, Dunand-Sauthier I, Barras E, Reith W, Santos MA, Pierre P (2009) MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A 106:2735–2740. https://doi.org/10.1073/pnas.0811073106

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chabowski A, Zendzian-Piotrowska M, Konstantynowicz K, Pankiewicz W, Miklosz A, Lukaszuk B, Gorski J (2013) Fatty acid transporters involved in the palmitate and oleate induced insulin resistance in primary rat hepatocytes. Acta Physiol (Oxf) 207:346–357. https://doi.org/10.1111/apha.12022

    Article  CAS  Google Scholar 

  5. Cloonan N (2015) Re-thinking miRNA-mRNA interactions: intertwining issues confound target discovery. BioEssays 37:379–388. https://doi.org/10.1002/bies.201400191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Davidson LA, Wang N, Shah MS, Lupton JR, Ivanov I, Chapkin RS (2009) n-3 Polyunsaturated fatty acids modulate carcinogen-directed non-coding microRNA signatures in rat colon. Carcinogenesis 30:2077–2084. https://doi.org/10.1093/carcin/bgp245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Finucane OM, Lyons CL, Murphy AM, Reynolds CM, Klinger R, Healy NP, Cooke AA, Coll RC, McAllan L, Nilaweera KN, O'Reilly ME, Tierney AC, Morine MJ, Alcala-Diaz JF, Lopez-Miranda J, O'Connor DP, O'Neill LA, McGillicuddy FC, Roche HM (2015) Monounsaturated fatty acid-enriched high-fat diets impede adipose NLRP3 inflammasome-mediated IL-1beta secretion and insulin resistance despite obesity. Diabetes 64:2116–2128. https://doi.org/10.2337/db14-1098

    Article  CAS  PubMed  Google Scholar 

  8. Garcia-Segura L, Perez-Andrade M, Miranda-Rios J (2013) The emerging role of MicroRNAs in the regulation of gene expression by nutrients. J Nutrigenet Nutrigenomics 6:16–31. https://doi.org/10.1159/000345826

    Article  CAS  PubMed  Google Scholar 

  9. Gil-Zamorano J, Martin R, Daimiel L, Richardson K, Giordano E, Nicod N, Garcia-Carrasco B, Soares SM, Iglesias-Gutierrez E, Lasuncion MA, Sala-Vila A, Ros E, Ordovas JM, Visioli F, Davalos A (2014) Docosahexaenoic acid modulates the enterocyte Caco-2 cell expression of microRNAs involved in lipid metabolism. J Nutr 144:575–585. https://doi.org/10.3945/jn.113.189050

    Article  CAS  PubMed  Google Scholar 

  10. Guo Z, Wu R, Gong J, Zhu W, Li Y, Wang Z, Li N, Li J (2015) Altered microRNA expression in inflamed and non-inflamed terminal ileal mucosa of adult patients with active Crohn’s disease. J Gastroenterol Hepatol 30:109–116. https://doi.org/10.1111/jgh.12644

    Article  CAS  PubMed  Google Scholar 

  11. Hausser J, Zavolan M (2014) Identification and consequences of miRNA-target interactions—beyond repression of gene expression. Nat Rev Genet 15:599–612. https://doi.org/10.1038/nrg3765

    Article  CAS  PubMed  Google Scholar 

  12. Jin HY, Gonzalez-Martin A, Miletic AV, Lai M, Knight S, Sabouri-Ghomi M, Head SR, Macauley MS, Rickert RC, Xiao C (2015) Transfection of microRNA mimics should be used with caution. Front Genet 6:340. https://doi.org/10.3389/fgene.2015.00340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Katayama M, Sjogren RJ, Egan B, Krook A (2015) miRNA let-7 expression is regulated by glucose and TNF-alpha by a remote upstream promoter. Biochem J 472:147–156. https://doi.org/10.1042/BJ20150224

    Article  CAS  PubMed  Google Scholar 

  14. Kolar SS, Barhoumi R, Lupton JR, Chapkin RS (2007) Docosahexaenoic acid and butyrate synergistically induce colonocyte apoptosis by enhancing mitochondrial Ca2+ accumulation. Cancer Res 67:5561–5568. https://doi.org/10.1158/0008-5472.CAN-06-4716

    Article  CAS  PubMed  Google Scholar 

  15. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73. https://doi.org/10.1093/nar/gkt1181

    Article  CAS  Google Scholar 

  16. Kurowska-Stolarska M, Alivernini S, Ballantine LE, Asquith DL, Millar NL, Gilchrist DS, Reilly J, Ierna M, Fraser AR, Stolarski B, McSharry C, Hueber AJ, Baxter D, Hunter J, Gay S, Liew FY, McInnes IB (2011) MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc Natl Acad Sci U S A 108:11193–11198. https://doi.org/10.1073/pnas.1019536108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kwon B, Lee HK, Querfurth HW (2014) Oleate prevents palmitate-induced mitochondrial dysfunction, insulin resistance and inflammatory signaling in neuronal cells. Biochim Biophys Acta 1843:1402–1413. https://doi.org/10.1016/j.bbamcr.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  18. Liao YC, Wang YS, Guo YC, Lin WL, Chang MH, Juo SH (2014) Let-7g improves multiple endothelial functions through targeting transforming growth factor-beta and SIRT-1 signaling. J Am Coll Cardiol 63:1685–1694. https://doi.org/10.1016/j.jacc.2013.09.069

    Article  CAS  PubMed  Google Scholar 

  19. Louafi F, Martinez-Nunez RT, Sanchez-Elsner T (2010) MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-{beta}. J Biol Chem 285:41328–41336. https://doi.org/10.1074/jbc.M110.146852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marques-Rocha JL, Milagro FI, Mansego ML, Zulet MA, Bressan J, Martinez JA (2016) Expression of inflammation-related miRNAs in white blood cells from subjects with metabolic syndrome after 8 wk of following a Mediterranean diet-based weight loss program. Nutrition 32:48–55. https://doi.org/10.1016/j.nut.2015.06.008

    Article  CAS  PubMed  Google Scholar 

  21. Marques-Rocha JL, Samblas M, Milagro FI, Bressan J, Martinez JA, Marti A (2015) Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J 29:3595–3611. https://doi.org/10.1096/fj.14-260323

    Article  CAS  Google Scholar 

  22. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241. https://doi.org/10.1038/nature04516

    Article  CAS  PubMed  Google Scholar 

  23. Moore CS, Rao VT, Durafourt BA, Bedell BJ, Ludwin SK, Bar-Or A, Antel JP (2013) miR-155 as a multiple sclerosis-relevant regulator of myeloid cell polarization. Ann Neurol 74:709–720. https://doi.org/10.1002/ana.23967

    Article  CAS  PubMed  Google Scholar 

  24. O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 104:1604–1609. https://doi.org/10.1073/pnas.0610731104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Omran A, Ashhab MU, Gan N, Kong H, Peng J, Yin F (2013) Effects of MRP8, LPS, and lenalidomide on the expressions of TNF-alpha, brain-enriched, and inflammation-related microRNAs in the primary astrocyte culture. ScientificWorldJournal 2013:208309. https://doi.org/10.1155/2013/208309, 1, 9

    Article  Google Scholar 

  26. Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK (2008) Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther 10:R101. https://doi.org/10.1186/ar2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peng H, Sun L, Jia B, Lan X, Zhu B, Wu Y, Zheng J (2011) HIV-1-infected and immune-activated macrophages induce astrocytic differentiation of human cortical neural progenitor cells via the STAT3 pathway. PLoS One 6:e19439. https://doi.org/10.1371/journal.pone.0019439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Perdomo L, Beneit N, Otero YF, Escribano O, Diaz-Castroverde S, Gomez-Hernandez A, Benito M (2015) Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process. Cardiovasc Diabetol 14:75. https://doi.org/10.1186/s12933-015-0237-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perez-Martinez P, Garcia-Quintana JM, Yubero-Serrano EM, Tasset-Cuevas I, Tunez I, Garcia-Rios A, Delgado-Lista J, Marin C, Perez-Jimenez F, Roche HM, Lopez-Miranda J (2010) Postprandial oxidative stress is modified by dietary fat: evidence from a human intervention study. Clin Sci (Lond) 119:251–261. https://doi.org/10.1042/CS20100015

    Article  CAS  Google Scholar 

  30. Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8:49–62. https://doi.org/10.1038/nrm2083

    Article  CAS  PubMed  Google Scholar 

  31. Recchiuti A, Krishnamoorthy S, Fredman G, Chiang N, Serhan CN (2011) MicroRNAs in resolution of acute inflammation: identification of novel resolvin D1-miRNA circuits. FASEB J 25:544–560. https://doi.org/10.1096/fj.10-169599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rocha DM, Caldas AP, Oliveira LL, Bressan J, Hermsdorff HH (2016) Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis 244:211–215. https://doi.org/10.1016/j.atherosclerosis.2015.11.015

    Article  CAS  PubMed  Google Scholar 

  33. Sacks FM, Lichtenstein AH, Wu JHY, Appel LJ, Creager MA, Kris-Etherton PM, Miller M, Rimm EB, Rudel LL, Robinson JG, Stone NJ, Van Horn LV (2017) Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation 136:e1-e23. https://doi.org/10.1161/cir.0000000000000510

  34. Senn JJ (2006) Toll-like receptor-2 is essential for the development of palmitate-induced insulin resistance in myotubes. J Biol Chem 281:26865–26875. https://doi.org/10.1074/jbc.M513304200

    Article  CAS  PubMed  Google Scholar 

  35. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103:12481–12486. https://doi.org/10.1073/pnas.0605298103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Teng GG, Wang WH, Dai Y, Wang SJ, Chu YX, Li J (2013) Let-7b is involved in the inflammation and immune responses associated with Helicobacter pylori infection by targeting Toll-like receptor 4. PLoS One 8:e56709. https://doi.org/10.1371/journal.pone.0056709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thounaojam MC, Kundu K, Kaushik DK, Swaroop S, Mahadevan A, Shankar SK, Basu A (2014) MicroRNA 155 regulates Japanese encephalitis virus-induced inflammatory response by targeting Src homology 2-containing inositol phosphatase 1. J Virol 88:4798–4810. https://doi.org/10.1128/JVI.02979-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ti D, Hao H, Tong C, Liu J, Dong L, Zheng J, Zhao Y, Liu H, Fu X, Han W (2015) LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med 13:308. https://doi.org/10.1186/s12967-015-0642-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, Fabbri M, Alder H, Liu CG, Calin GA, Croce CM (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179:5082–5089

    Article  CAS  Google Scholar 

  40. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934. https://doi.org/10.1126/science.1149460

    Article  CAS  PubMed  Google Scholar 

  41. Woodbury ME, Freilich RW, Cheng CJ, Asai H, Ikezu S, Boucher JD, Slack F, Ikezu T (2015) miR-155 is essential for inflammation-induced hippocampal neurogenic dysfunction. J Neurosci 35:9764–9781. https://doi.org/10.1523/JNEUROSCI.4790-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang L, Qian Z, Ji H, Yang R, Wang Y, Xi L, Sheng L, Zhao B, Zhang X (2010) Inhibitory effect on protein kinase Ctheta by Crocetin attenuates palmitate-induced insulin insensitivity in 3T3-L1 adipocytes. Eur J Pharmacol 642:47–55. https://doi.org/10.1016/j.ejphar.2010.05.061

    Article  CAS  PubMed  Google Scholar 

  43. Yee D, Shah KM, Coles MC, Sharp TV, Lagos D (2017) MicroRNA-155 induction via TNF-alpha and IFN-gamma suppresses expression of programmed death ligand-1 (PD-L1) in human primary cells. J Biol Chem 292:20683–20693. https://doi.org/10.1074/jbc.M117.809053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zeuner M, Bieback K, Widera D (2015) Controversial role of Toll-like receptor 4 in adult stem cells. Stem Cell Rev 11:621–634. https://doi.org/10.1007/s12015-015-9589-5

    Article  CAS  PubMed  Google Scholar 

  45. Zhang J, Zhang F, Didelot X, Bruce KD, Cagampang FR, Vatish M, Hanson M, Lehnert H, Ceriello A, Byrne CD (2009) Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring. BMC Genomics 10:478. https://doi.org/10.1186/1471-2164-10-478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by research grant to JLM-R (CAPES Foundation, Ministry of Education of Brazil, PDSE process no. 6409-13-0), MINECO (ref. AGL2013-45554-R), and CIBERobn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.I. Milagro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques-Rocha, J., Garcia-Lacarte, M., Samblas, M. et al. Regulatory roles of miR-155 and let-7b on the expression of inflammation-related genes in THP-1 cells: effects of fatty acids. J Physiol Biochem 74, 579–589 (2018). https://doi.org/10.1007/s13105-018-0629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-018-0629-x

Keywords

Navigation