Skip to main content

Advertisement

Log in

CypD-mPTP axis regulates mitochondrial functions contributing to osteogenic dysfunction of MC3T3-E1 cells in inflammation

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Bone is a dynamic organ, the bone-forming osteoblasts and bone-resorbing osteoclasts form the physiological basis of bone remodeling process. During pathological process of numerous inflammatory diseases, these two aspects are uncoupled and the balance is usually tipped in favor of bone destruction. Evidence suggests that the inflammatory destruction of bone is mainly attributed to oxidative stress and is closely related to mitochondrial dysfunction. The mechanisms underlying osteogenic dysfunction in inflammation still need further investigation. Reactive oxygen species (ROS) is associated with mitochondrial dysfunction and cellular damage. Here, we reported an unexplored role of cyclophilin D (CypD), the major modulator of mitochondrial permeability transition pore (mPTP), and the CypD-mPTP axis in inflammation-induced mitochondrial dysfunction and bone damage. And the protective effects of knocking down CypD by siRNA interference or the addition of cyclosporin A (CsA), an inhibitor of CypD, were evidenced by rescued mitochondrial function and osteogenic function of osteoblast under tumor necrosis factor-α (TNF-α) treatment. These findings provide new insights into the role of CypD-mPTP-dependent mitochondrial pathway in the inflammatory bone injury. The protective effect of CsA or other moleculars affecting the mPTP formation may hold promise as a potential novel therapeutic strategy for inflammation-induced bone damage via mitochondrial pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alam MR, Baetz D, Ovize M (2015) Cyclophilin D and myocardial ischemia-reperfusion injury: a fresh perspective. J Mol Cell Cardiol 78:80–89. https://doi.org/10.1016/j.yjmcc.2014.09.026

    Article  PubMed  CAS  Google Scholar 

  2. Anami Y, Sakamaki Y, Itoh T, Inaba Y, Nakabayashi M, Ikura T, Ito N, Yamamoto K (2015) Fine tuning of agonistic/antagonistic activity for vitamin D receptor by 22-alkyl chain length of ligands: 22S-Hexyl compound unexpectedly restored agonistic activity. Bioorg Med Chem 23:7274–7281. https://doi.org/10.1016/j.bmc.2015.10.026

    Article  PubMed  CAS  Google Scholar 

  3. Bernardi P, Di Lisa F (2015) The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol 78:100–106. https://doi.org/10.1016/j.yjmcc.2014.09.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Cai WW, Zhang MH, Yu YS, Cai JH (2013) Treatment with hydrogen molecule alleviates TNF alpha-induced cell injury in osteoblast. Mol Cell Biochem 373:1–9. https://doi.org/10.1007/s11010-012-1450-4

    Article  PubMed  CAS  Google Scholar 

  5. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252. https://doi.org/10.1016/j.cell.2006.06.010

    Article  PubMed  CAS  Google Scholar 

  6. Chinopoulos C, Starkov AA, Fiskum G (2003) Cyclosporin A-insensitive permeability transition in brain mitochondria: inhibition by 2-aminoethoxydiphenyl borate. J Biol Chem 278:27382–27389. https://doi.org/10.1074/jbc.M303808200

    Article  PubMed  CAS  Google Scholar 

  7. Clarke SJ, McStay GP, Halestrap AP (2002) Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J Biol Chem 277:34793–34799. https://doi.org/10.1074/jbc.M202191200

    Article  PubMed  CAS  Google Scholar 

  8. Collins Y, Chouchani ET, James AM, Menger KE, Cocheme HM, Murphy MP (2012) Mitochondrial redox signalling at a glance. J Cell Sci 125:801–806. https://doi.org/10.1242/jcs.098475

    Article  PubMed  CAS  Google Scholar 

  9. Du H, Guo L, Wu X, Sosunov AA, McKhann GM, Chen JX, Yan SS (2014) Cyclophilin D deficiency rescues Abeta-impaired PKA/CREB signaling and alleviates synaptic degeneration. Biochim Biophys Acta 1842:2517–2527. https://doi.org/10.1016/j.bbadis.2013.03.004

    Article  PubMed  CAS  Google Scholar 

  10. Feng D, Tang Y, Kwon H, Zong H, Hawkins M, Kitsis RN, Pessin JE (2011) High-fat diet-induced adipocyte cell death occurs through a cyclophilin D intrinsic signaling pathway independent of adipose tissue inflammation. Diabetes 60:2134–2143. https://doi.org/10.2337/db10-1411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ginaldi L, Di Benedetto MC, De Martinis M (2005) Osteoporosis, inflammation and ageing. Immun Ageing 2:14. https://doi.org/10.1186/1742-4933-2-14

    Article  PubMed  PubMed Central  Google Scholar 

  12. Giorgio V, Soriano ME, Basso E, Bisetto E, Lippe G, Forte MA, Bernardi P (2010) Cyclophilin D in mitochondrial pathophysiology. Biochim Biophys Acta 1797:1113–1118. https://doi.org/10.1016/j.bbabio.2009.12.006

    Article  PubMed  CAS  Google Scholar 

  13. Grcevic D, Katavic V, Lukic IK, Kovacic N, Lorenzo JA, Marusic A (2001) Cellular and molecular interactions between immune system and bone. Croat Med J 42:384–392

    PubMed  CAS  Google Scholar 

  14. Halestrap AP, Woodfield KY, Connern CP (1997) Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem 272:3346–3354

    Article  PubMed  CAS  Google Scholar 

  15. Hsu SH, Chen CT, Wei YH (2013) Inhibitory effects of hypoxia on metabolic switch and osteogenic differentiation of human mesenchymal stem cells. Stem Cells 31:2779–2788. https://doi.org/10.1002/stem.1441

    Article  PubMed  CAS  Google Scholar 

  16. Hughes G, Murphy MP, Ledgerwood EC (2005) Mitochondrial reactive oxygen species regulate the temporal activation of nuclear factor kappaB to modulate tumour necrosis factor-induced apoptosis: evidence from mitochondria-targeted antioxidants. Biochem J 389:83–89. https://doi.org/10.1042/BJ20050078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lerner UH (2006) Inflammation-induced bone remodeling in periodontal disease and the influence of post-menopausal osteoporosis. J Dent Res 85:596–607. https://doi.org/10.1177/154405910608500704

    Article  PubMed  CAS  Google Scholar 

  18. Liao CM, Ling MP (2003) Assessment of human health risks for arsenic bioaccumulation in tilapia (Oreochromis mossambicus) and large-scale mullet (Liza macrolepis) from blackfoot disease area in Taiwan. Arch Environ Contam Toxicol 45:264–272

    Article  PubMed  CAS  Google Scholar 

  19. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658. https://doi.org/10.1038/nature03317

    Article  PubMed  CAS  Google Scholar 

  20. Osta B, Benedetti G, Miossec P (2014) Classical and paradoxical effects of TNF-alpha on bone homeostasis. Front Immunol 5:48. https://doi.org/10.3389/fimmu.2014.00048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Rao VK, Carlson EA, Yan SS (2014) Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim Biophys Acta 1842:1267–1272. https://doi.org/10.1016/j.bbadis.2013.09.003

    Article  PubMed  CAS  Google Scholar 

  22. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sanz A (2016) Mitochondrial reactive oxygen species: do they extend or shorten animal lifespan? Biochim Biophys Acta 1857:1116–1126. https://doi.org/10.1016/j.bbabio.2016.03.018

    Article  PubMed  CAS  Google Scholar 

  24. Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J, Hetz C, Danial NN, Moskowitz MA, Korsmeyer SJ (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci U S A 102:12005–12010. https://doi.org/10.1073/pnas.0505294102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48:158–167. https://doi.org/10.1016/j.molcel.2012.09.025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Shum LC, White NS, Nadtochiy SM, Bentley KL, Brookes PS, Jonason JH, Eliseev RA (2016) Cyclophilin D knock-out mice show enhanced resistance to osteoporosis and to metabolic changes observed in aging bone. PLoS One 11:e0155709. https://doi.org/10.1371/journal.pone.0155709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Takei H, Pioletti DP, Kwon SY, Sung KL (2000) Combined effect of titanium particles and TNF-alpha on the production of IL-6 by osteoblast-like cells. J Biomed Mater Res 52:382–387

    Article  PubMed  CAS  Google Scholar 

  28. Xu ZS, Wang XY, Xiao DM, Hu LF, Lu M, Wu ZY, Bian JS (2011) Hydrogen sulfide protects MC3T3-E1 osteoblastic cells against H2O2-induced oxidative damage-implications for the treatment of osteoporosis. Free Radic Biol Med 50:1314–1323. https://doi.org/10.1016/j.freeradbiomed.2011.02.016

    Article  PubMed  CAS  Google Scholar 

  29. Zenke G, Strittmatter U, Fuchs S, Quesniaux VF, Brinkmann V, Schuler W, Zurini M, Enz A, Billich A, Sanglier JJ, Fehr T (2001) Sanglifehrin A, a novel cyclophilin-binding compound showing immunosuppressive activity with a new mechanism of action. J Immunol 166:7165–7171

    Article  PubMed  CAS  Google Scholar 

  30. Zhen YF, Wang GD, Zhu LQ, Tan SP, Zhang FY, Zhou XZ, Wang XD (2014) P53 dependent mitochondrial permeability transition pore opening is required for dexamethasone-induced death of osteoblasts. J Cell Physiol 229:1475–1483. https://doi.org/10.1002/jcp.24589

    Article  PubMed  CAS  Google Scholar 

  31. Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192:1001–1014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was sponsored by a grant from the National Key Research and Development Program of China (2016YFC1102704), the National Natural Science Foundation of China (no.81400483), and Sichuan Province Science and Technology Innovation Team Program (2011JTD0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyang Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, X., Zhang, L., Liu, B. et al. CypD-mPTP axis regulates mitochondrial functions contributing to osteogenic dysfunction of MC3T3-E1 cells in inflammation. J Physiol Biochem 74, 395–402 (2018). https://doi.org/10.1007/s13105-018-0627-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-018-0627-z

Keywords

Navigation