Journal of Physiology and Biochemistry

, Volume 74, Issue 3, pp 381–393 | Cite as

miR-128-3p regulates 3T3-L1 adipogenesis and lipolysis by targeting Pparg and Sertad2

  • Chen Chen
  • Yuan Deng
  • Xionggui Hu
  • Huibo Ren
  • Ji Zhu
  • Shengcai Fu
  • Julan Xie
  • Yinglin Peng
Original Article


Differentiation of adipocytes and their aggregation to adipose tissue are critical for mammalian growth and development. MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that play important roles in adipogenesis and lipid metabolism. miR-128-3p may contribute to adipose tissue development according to the previous studies. However, the role of miR-128-3p in the process of preadipocyte differentiation and lipid metabolism is not yet understood. The purpose of this research was to investigate the biological function and molecular mechanism of miR-128-3p in 3T3-L1 cells. In the present study, we found that miR-128-3p was downregulated during the process of 3T3-L1 preadipocyte differentiation. Overexpression of miR-128-3p obstructed the expressions of adipogenic marker genes as well as the lipid droplets accumulation and triglyceride content, suggesting the importance of miR-128-3p for adipogenesis. Moreover, miR-128-3p could lead to the retardation of cell proliferation in 3T3-L1 preadipocytes. Further evidences showed that, as a negative regulator of adipogenesis, miR-128-3p could directly target peroxisome proliferator-activated receptor γ (Pparg) which resulted in the suppression of 3T3-L1 preadipocyte differentiation, and miR-128-3p could also bind with SERTA domain containing 2 (Sertad2) which drove triglyceride hydrolysis and lipolysis. In addition, inhibition of Sertad2 with siRNA displayed the same effects as overexpression of miR-128-3p. Our research demonstrated that miR-128-3p impeded 3T3-L1 adipogenesis by targeting Pparg and Sertad2, resulting in the obstruction of preadipocyte differentiation and promotion of lipolysis. Taken together, this study offers profound insight into the mechanism of miRNA-mediated adipogenesis and lipid metabolism.


miR-128-3p 3T3-L1 adipogenesis Lipolysis Pparg Sertad2 



CCAAT/enhancer binding protein α


Peroxisome proliferator-activated receptor γ


Fatty acid synthase


Adipocyte fatty acid binding protein


Triglyceride lipase




SERTA domain containing 2


Free fatty acid


Quantitative real-time polymerase chain reaction


Untranslated region



This research was funded by the National Natural Science Foundation of China (31401097), Key Research and Development Program of Hunan Province of China (2016NK2169, 2017NK2331), Open Research Program of Hunan Provincial Key Laboratory (2017TP1030), and National High Technology Research and Development Program of China (2013AA102503).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Chen C, Deng B, Qiao M, Zheng R, Chai J, Ding Y, Peng J, Jiang S (2012) Solexa sequencing identification of conserved and novel microRNAs in backfat of Large White and Chinese Meishan pigs. PLoS One 7:e31426CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chen C, Xiang H, Peng YL, Peng J, Jiang SW (2014) Mature miR-183, negatively regulated by transcription factor GATA3, promotes 3T3-L1 adipogenesis through inhibition of the canonical Wnt/β-catenin signaling pathway by targeting LRP6. Cell Signal 26(6):1155–1165CrossRefPubMedGoogle Scholar
  4. 4.
    Chen L, Chen Y, Zhang S, Ye L, Cui J, Sun Q, Li K, Wu H, Liu L (2015) MiR-540 as a novel adipogenic inhibitor impairs adipogenesis via suppression of PPARγ. J Cell Biochem 116(6):969–976CrossRefPubMedGoogle Scholar
  5. 5.
    Chen L, Song J, Cui J, Hou J, Zheng X, Li C, Liu L (2013) MicroRNAs regulate adipocyte differentiation. Cell Biol Int 37(6):533–546CrossRefPubMedGoogle Scholar
  6. 6.
    Das SK, Stadelmeyer E, Schauer S, Schwarz A, Strohmaier H, Claudel T, Zechner R, Hoefler G, Vesely PW (2015) MicroRNA-124a regulates lipolysis via adipose triglyceride lipase and comparative gene identification 58. Int J Mol Sci 16(4):8555–8568CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dave S, Kaur NJ, Nanduri R, Dkhar HK, Kumar A, Gupta P (2012) Inhibition of adipogenesis and induction of apoptosis and lipolysis by stem bromelain in 3T3-L1 adipocytes. PLoS One 7(1):e303831CrossRefGoogle Scholar
  8. 8.
    Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, Sun Y, Koo S, Perera RJ, Jain R, Dean NM, Freier SM, Bennett CF, Lollo B, Griffey R (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279(50):52361–52365CrossRefPubMedGoogle Scholar
  9. 9.
    Ferland-McCollough D, Fernandez-Twinn DS, Cannell IG, David H, Warner M, Vaag AA, Bork-Jensen J, BrØns C, Gant TW, Willis AE et al (2012) Programming of adipose tissue miR-483-3p and GDF-3 expression by maternal diet in type 2 diabetes. Cell Death Differ 19(6):1003–1012CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fève B (2005) Adipogenesis: cellular and molecular aspects. Best PractRes Clin Endocrinol Metab 19(4):483–499CrossRefGoogle Scholar
  11. 11.
    Gerin I, Bommer GT, McCoin CS, Sousa KM, Krishnan V, MacDougald OA (2010) Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. Am J PhysiolEndocrinolMetab 299(2):E198–E206Google Scholar
  12. 12.
    Grueter CE, van Rooij E, Johnson BA, Deleon SM, Sutherland LB, Qi X, Gautron L, Elmquist JK, Bassel-Duby R, Olson EN (2012) A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell 149(3):671–683CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gu C, Xu Y, Zhang S, Guan H, Song S, Wang X, Wang Y, Li Y, Zhao G (2016) MiR-27a attenuates adipogenesis and promotes osteogenesis in steroid-induced rat BMSCs by targeting PPARγ and GREM1. Sci Rep 6:38491CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Guo Y, Yu J, Wang C, Li K, Liu B, Du Y, Xiao F, Chen S, Guo F (2017) MiR-212-5p suppresses lipid accumulation by targeting FAS and SCD1. J Mol Endocrinol 59(3):205–217CrossRefPubMedGoogle Scholar
  15. 15.
    Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77(1):51–59CrossRefPubMedGoogle Scholar
  16. 16.
    Jaworski K, Ahmadian M, Duncan RE, Sarkadi-Nagy E, Varady KA, Hellerstein MK, Lee HY, Samuel VT, Shulman GI, Kim KH, de Val S, Kang C, Sul HS (2009) AdPLA ablation increase lipolysis and prevents obesity induced by high-fat feeding or leptin deficiency. Nat Med 15(2):159–168CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jeong BC, Kang IH, Koh JT (2014) MicroRNA-302a inhibits adipogenesis by suppressing peroxisome proliferator-activated receptor γ expression. FEBS Lett 588(18):3427–3434CrossRefPubMedGoogle Scholar
  18. 18.
    Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89(6):2548–2456CrossRefPubMedGoogle Scholar
  19. 19.
    Lee EK, Lee MJ, Abdelmohsen K, Kim W, Kim MM, Srikantan S, Martindale JL, Hutchison ER, Kim HH, Marasa BS, Selimyan R, Egan JM, Smith SR, Fried SK, Gorospe M (2011) MiR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression. Mol Cell Biol 31(4):626–638CrossRefPubMedGoogle Scholar
  20. 20.
    Lefterova MI, Lazar MA (2009) New development in adipogenesis. Trends Endocrinol Metab 20(3):107–114CrossRefPubMedGoogle Scholar
  21. 21.
    Li HY, Xi QY, Xiong YY, Liu XL, Cheng X, Shu G, Wang SB, Wang LN, Gao P, Zhu XT, Jiang QY, Yuan L, Zhang YL (2012) Identification and comparison of microRNAs from skeletal muscle and adipose tissue from two porcine breeds. Anim Genet 43(6):704–713CrossRefPubMedGoogle Scholar
  22. 22.
    Liew CW, Boucher J, Cheong JK, Vernochet C, Koh HJ, Mallol C, Townsend K, Langin D, Kawamori D, Hu J, Tseng YH, Hellerstein MK, Farmer SR, Goodyear L, Doria A, Blüher M, Hsu SIH, Kulkarni RN (2013) Ablation of TRIP-Br2, a regulator of fat lipolysis, thermogenesis and oxidative metabolism, prevents diet-induced obesity and insulin resistance. Nat Med 19(2):217–226CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mallanna SK, Rizzino A (2010) Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells. Dev Biol 344(1):16–25CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Martinelli R, Nardelli C, Pilone V, Buonomo T, Liguori R, Castanò I, Buono P, Masone S, Persico G, Forestieri P, Pastore L, Sacchetti L (2010) MiR-519d overexpression is associated with human obesity. Obesity 18(11):2170–2176CrossRefPubMedGoogle Scholar
  25. 25.
    Motohashi N, Alexander MS, Casar JC, Kunkel LM (2012) Identification of a novel microRNA that regulates the proliferation and differentiation in muscle side population cells. Stem Cells Dev 21(16):3031–3043CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Park H, Cho JA, Lim EH, Lee CW, Lee SH, Won SS, Yang DY, Lee KW (2011) Cell cycle regulators are critical for maintaining the differentiation potential and immaturity in adipogenesis of adipose-derived stem cells. Differentiation 82(3):136–143CrossRefPubMedGoogle Scholar
  27. 27.
    Park H, Park H, Park HJ, Yang DY, Kim YH, Choi WJ, Park SJ, Cho JA, Lee KW (2015) MiR-34a inhibition differentiation of human adipose tissue-derived stem cells by regulating cell cycle and senescence induction. Differentiation 90(4–5):91–100CrossRefPubMedGoogle Scholar
  28. 28.
    Peng Y, Yu S, Li H, Xiang H, Peng J, Jiang S (2014) MicroRNAs: emerging roles in adipogenesis and obesity. Cell Signal 26(9):1888–1896CrossRefPubMedGoogle Scholar
  29. 29.
    Rayner KJ, Fernandez-Hernando C, Moore KJ (2012) MicroRNAs regulating lipid metabolism in atherogenesis. Thromb Haemost 107(4):642–647CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Reichert M, Eick D (1999) Analysis of cell cycle arrest in adipocyte differentiation. Oncogene 18(2):459–466CrossRefPubMedGoogle Scholar
  31. 31.
    Spiegelman BM, Flier JS (2001) Obesity and the regulation of energy balance. Cell 104(4):531–543CrossRefPubMedGoogle Scholar
  32. 32.
    Sun T, Fu M, Bookout AL, Kliewer SA, Mangelsdorf DJ (2009) MicorRNA let-7 regulates 3T3-L1 adipogenesis. Mol Endocrinol 23(6):925–931CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Trohatou O, Zagoura D, Orfanos NK, Pappa KI, Marinos E, Anagnou NP, Roubelakis MG (2017) MiR-26a mediates adipogenesis of amniotic fluid mesenchymal stem/stromal cells via PTEN, Cyclin E1, and CDK6. Stem Cells Dev 26(7):482–494CrossRefPubMedGoogle Scholar
  34. 34.
    White UA, Stephens JM (2010) Transcriptional factors that promote formation of white adipose tissue. Mol Cell Endocrinol 318(1–2):10–14CrossRefPubMedGoogle Scholar
  35. 35.
    Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306(5700):1383–1386CrossRefPubMedGoogle Scholar

Copyright information

© University of Navarra 2018

Authors and Affiliations

  1. 1.Hunan Institute of Animal & Veterinary ScienceChangshaPeople’s Republic of China

Personalised recommendations