Skip to main content

Advertisement

Log in

Protective effects of mitochondrion-targeted peptide SS-31 against hind limb ischemia-reperfusion injury

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Hind limb ischemia-reperfusion injury is an important pathology in vascular surgery. Reactive oxygen species are thought to be involved in the pathogenesis of hind limb ischemia-reperfusion injury. SS-31, which belongs to a family of mitochondrion-targeted peptide antioxidants, was shown to reduce mitochondrial reactive oxygen species production. In this study, we investigated whether the treatment of SS-31 could protect hind limb from ischemia-reperfusion injury in a mouse model. The results showed that SS-31 treatment either before or after ischemia exhibited similar protective effects. Histopathologically, SS-31 treatment prevented the IR-induced histological deterioration compared with the corresponding vehicle control. SS-31 treatment diminished oxidative stress revealed by the reduced malondialdehyde level and increased activities and protein levels of Sod and catalase. Cellular ATP contents and mitochondrial membrane potential increased and the level of cytosolic cytC was decreased after SS-31 treatment in this IR model, demonstrating that mitochondria were protected. The IR-induced increase of levels of inflammatory factors, such as Tnf-α and Il-1β, was prevented by SS-31 treatment. In agreement with the reduced cytosolic cytC, cleaved-caspase 3 was kept at a very low level after SS-31 treatment. Overall, the effect of SS-31 treatment before ischemia is mildly more effective than that after ischemia. In conclusion, our results demonstrate that SS-31 confers a protective effect in the mouse model of hind limb ischemia-reperfusion injury preventatively and therapeutically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Atahan E, Ergun Y, Kurutas EB, Alici T (2010) Protective effect of zinc aspartate on long-term ischemia-reperfusion injury in rat skeletal muscle. Biol Trace Elem Res 137:206–215

    CAS  PubMed  Google Scholar 

  2. Becker LB (2004) New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res 61:461–470

    CAS  PubMed  Google Scholar 

  3. Beiras-Fernandez A, Thein E, Chappel D, Gallego R, Fernandez-Roel D, Kemming G, Hammer C (2004) Polyclonal anti-thymocyte globulins influence apoptosis in reperfused tissues after ischaemia in a non-human primate model. Transpl Int : Off J Eur Soc Organ Transplant 17:453–457

    CAS  Google Scholar 

  4. Birk AV, Liu S, Soong Y, Mills W, Singh P, Warren JD, Seshan SV, Pardee JD, Szeto HH (2013) The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J Am Soc Nephrol : JASN 24:1250–1261

    CAS  PubMed  Google Scholar 

  5. Chen Q, Moghaddas S, Hoppel CL, Lesnefsky EJ (2006) Reversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion. J Pharmacol Exp Ther 319:1405–1412

    CAS  PubMed  Google Scholar 

  6. Cho J, Won K, Wu D, Soong Y, Liu S, Szeto HH, Hong MK (2007) Potent mitochondria-targeted peptides reduce myocardial infarction in rats. Coron Artery Dis 18:215–220

    PubMed  Google Scholar 

  7. Chovatiya R, Medzhitov R (2014) Stress, inflammation, and defense of homeostasis. Mol Cell 54:281–288

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Comu FM, Kilic Y, Ozer A, Kirisci M, Dursun AD, Tatar T, Zor MH, Kartal H, Kucuk A, Boyunaga H et al (2016) Effect of picroside II on erythrocyte deformability and lipid peroxidation in rats subjected to hind limb ischemia reperfusion injury. Drug Des Dev Ther 10:927–931

    CAS  Google Scholar 

  9. Dai DF, Chen T, Szeto H, Nieves-Cintron M, Kutyavin V, Santana LF, Rabinovitch PS (2011) Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol 58:73–82

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovas 15:316–328

    Google Scholar 

  11. Dolegowska B, Pikula E, Safranow K, Olszewska M, Jakubowska K, Chlubek D, Gutowski P (2006) Metabolism of eicosanoids and their action on renal function during ischaemia and reperfusion: the effect of alprostadil. Prostaglandins Leukot Essent Fat Acids 75:403–411

    CAS  Google Scholar 

  12. Du LL, Chai DM, Zhao LN, Li XH, Zhang FC, Zhang HB, Liu LB, Wu K, Liu R, Wang JZ et al (2015) AMPK activation ameliorates Alzheimer’s disease-like pathology and spatial memory impairment in a streptozotocin-induced Alzheimer’s disease model in rats. J Alzheimers Dis 43:775–784

    CAS  PubMed  Google Scholar 

  13. Duehrkop C, Denoyelle J, Shaw S, Rieben R (2014) Use of dextran sulfate in tourniquet-induced skeletal muscle reperfusion injury. J Surg Res 187:150–161

    CAS  PubMed  Google Scholar 

  14. Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15:1583–1606

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gokce EC, Kahveci R, Gokce A, Sargon MF, Kisa U, Aksoy N, Cemil B, Erdogan B (2016) Curcumin attenuates inflammation, oxidative stress, and ultrastructural damage induced by spinal cord ischemia-reperfusion injury in rats. J Stroke Cerebrovasc Dis : Off J Natl Stroke Assoc 25:1196–1207

    Google Scholar 

  16. Hao S, Ji J, Zhao H, Shang L, Wu J, Li H, Qiao T, Li K (2015) Mitochondrion-targeted peptide SS-31 inhibited oxidized low-density lipoproteins-induced foam cell formation through both ROS scavenging and inhibition of cholesterol influx in RAW264.7 cells. Molecules 20:21287–21297

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kang WL, Xu GS (2016) Atrasentan increased the expression of klotho by mediating miR-199b-5p and prevented renal tubular injury in diabetic nephropathy. Sci Rep 6:19979

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lejay A, Meyer A, Schlagowski AI, Charles AL, Singh F, Bouitbir J, Pottecher J, Chakfe N, Zoll J, Geny B (2014) Mitochondria: mitochondrial participation in ischemia-reperfusion injury in skeletal muscle. Int J Biochem Cell Biol 50:101–105

    CAS  PubMed  Google Scholar 

  19. Li J, Li RJ, Lv GY, Liu HQ (2015) The mechanisms and strategies to protect from hepatic ischemia-reperfusion injury. Eur Rev Med Pharmacol Sci 19:2036–2047

    CAS  PubMed  Google Scholar 

  20. Manczak M, Mao PZ, Calkins MJ, Cornea A, Reddy AP, Murphy MP, Szeto HH, Park B, Reddy PH (2010) Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer’s disease neurons. J Alzheimers Dis 20:S609–S631

    PubMed  PubMed Central  Google Scholar 

  21. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435

    CAS  PubMed  Google Scholar 

  22. Pang YWC, Yu L (2015) Mitochondria-targeted antioxidant SS-31 is a potential novel ophthalmic medication for neuroprotection in glaucoma. Med Hypothesis Discov Innov Ophthalmol 4:120–126

    PubMed  PubMed Central  Google Scholar 

  23. Paradis S, Charles AL, Meyer A, Lejay A, Scholey JW, Chakfe N, Zoll J, Geny B (2016) Chronology of mitochondrial and cellular events during skeletal muscle ischemia-reperfusion. Am J Physiol Cell Physiol 310:C968–C982

    PubMed  PubMed Central  Google Scholar 

  24. Peralta C, Jimenez-Castro MB, Gracia-Sancho J (2013) Hepatic ischemia and reperfusion injury: effects on the liver sinusoidal milieu. J Hepatol 59:1094–1106

    PubMed  Google Scholar 

  25. Petri S, Kiaei M, Damiano M, Hiller A, Wille E, Manfredi G, Calingasan NY, Szeto HH, Beal MF (2006) Cell-permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis. J Neurochem 98:1141–1148

    CAS  PubMed  Google Scholar 

  26. Rodriguez-Lara SQ, Cardona-Munoz EG, Ramirez-Lizardo EJ, Totsuka-Sutto SE, Castillo-Romero A, Garcia-Cobian TA, Garcia-Benavides L (2016) Alternative interventions to prevent oxidative damage following ischemia/reperfusion. Oxidative Med Cell Longev 2016:7190943

    Google Scholar 

  27. Shen J, Xu S, Zhou H, Liu H, Jiang W, Hao J, Hu Z (2017) IL-1beta induces apoptosis and autophagy via mitochondria pathway in human degenerative nucleus pulposus cells. Sci Rep 7:41067

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Siegel MP, Kruse SE, Percival JM, Goh J, White CC, Hopkins HC, Kavanagh TJ, Szeto HH, Rabinovitch PS, Marcinek DJ (2013) Mitochondrial-targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice. Aging Cell 12:763–771

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Skulachev VP (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 29:169–202

    CAS  PubMed  Google Scholar 

  30. Szeto HH (2008) Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury. Antioxid Redox Signal 10:601–619

    CAS  PubMed  Google Scholar 

  31. Szeto HH (2014) First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Brit J Pharmacol 171:2029–2050

    CAS  Google Scholar 

  32. Szeto HH, Liu S, Soong Y, Wu D, Darrah SF, Cheng FY, Zhao Z, Ganger M, Tow CY, Seshan SV (2011) Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J Am Soc Nephrol : JASN 22:1041–1052

    CAS  PubMed  Google Scholar 

  33. Szeto HH, Schiller PW (2011) Novel therapies targeting inner mitochondrial membrane-from discovery to clinical development. Pharm Res-Dordr 28:2669–2679

    CAS  Google Scholar 

  34. Takhtfooladi HA, Hesaraki S, Razmara F, Takhtfooladi MA, Hajizadeh H (2016) Effects of N-acetylcysteine and pentoxifylline on remote lung injury in a rat model of hind-limb ischemia/reperfusion injury. Jornal brasileiro de pneumologia : publicacao oficial da Sociedade Brasileira de Pneumologia e Tisilogia 42:9–14

    Google Scholar 

  35. Toledo-Pereyra LH, Lopez-Neblina F, Toledo AH (2004) Reactive oxygen species and molecular biology of ischemia/reperfusion. Ann Transplant 9:81–83

    CAS  PubMed  Google Scholar 

  36. Tran TP, Tu H, Pipinos II, Muelleman RL, Albadawi H, Li YL (2011) Tourniquet-induced acute ischemia-reperfusion injury in mouse skeletal muscles: involvement of superoxide. Eur J Pharmacol 650:328–334

    CAS  PubMed  Google Scholar 

  37. Tsubota H, Marui A, Esaki J, Bir SC, Ikeda T, Sakata R (2010) Remote postconditioning may attenuate ischaemia-reperfusion injury in the murine hindlimb through adenosine receptor activation. Eur J Vasc Endovasc Surg : Off J Eur Soc Vasc Surg 40:804–809

    CAS  Google Scholar 

  38. Wang WZ, Fang XH, Stephenson LL, Zhang X, Khiabani KT, Zamboni WA (2011) Melatonin attenuates I/R-induced mitochondrial dysfunction in skeletal muscle. J Surg Res 171:108–113

    CAS  PubMed  Google Scholar 

  39. Wang Y, Wei Y, Zhang H, Shi Y, Li Y, Li R (2012) Arsenic trioxide induces apoptosis of p53 null osteosarcoma MG63 cells through the inhibition of catalase. Med Oncol 29:1328–1334

    PubMed  Google Scholar 

  40. Wu J, Zhang M, Li H, Sun X, Hao S, Ji M, Yang J, Li K (2016) BDNF pathway is involved in the protective effects of SS-31 on isoflurane-induced cognitive deficits in aging mice. Behav Brain Res 305:115–121

    CAS  PubMed  Google Scholar 

  41. Yassin MM, Harkin DW, Barros D'Sa AA, Halliday MI, Rowlands BJ (2002) Lower limb ischemia-reperfusion injury triggers a systemic inflammatory response and multiple organ dysfunction. World J Surg 26:115–121

    PubMed  Google Scholar 

  42. Zhang M, Zhao H, Cai J, Li H, Wu Q, Qiao T, Li K (2017) Chronic administration of mitochondrion-targeted peptide SS-31 prevents atherosclerotic development in ApoE knockout mice fed Western diet. PLoS One 12:e0185688

    PubMed  PubMed Central  Google Scholar 

  43. Zhao H, Li H, Hao S, Chen J, Wu J, Song C, Zhang M, Qiao T, Li K (2017) Peptide SS-31 upregulates frataxin expression and improves the quality of mitochondria: implications in the treatment of Friedreich ataxia. Sci Rep 7:9840

    PubMed  PubMed Central  Google Scholar 

  44. Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279:34682–34690

    CAS  Google Scholar 

  45. Zhao WY, Han S, Zhang L, Zhu YH, Wang LM, Zeng L (2013) Mitochondria-targeted antioxidant peptide SS31 prevents hypoxia/reoxygenation-induced apoptosis by down-regulating p66Shc in renal tubular epithelial cells. Cell Physiol Biochem : Int J Exp Cell Physiol Biochem Pharmacol 32:591–600

    Google Scholar 

  46. Zhu C, Hu W, Wu H, Hu X (2014) No evident dose-response relationship between cellular ROS level and its cytotoxicity—a paradoxical issue in ROS-based cancer therapy. Sci Rep 4:5029

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number: 81370387).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Zhang or Tong Qiao.

Ethics declarations

Experiments were approved by the Animal Investigation Ethic Committee of Nanjing University and were carried out in accordance with the National Institutes of Health (NIH Publication No. 85-23, revised 1996).

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, J., Jiang, Y., Zhang, M. et al. Protective effects of mitochondrion-targeted peptide SS-31 against hind limb ischemia-reperfusion injury. J Physiol Biochem 74, 335–343 (2018). https://doi.org/10.1007/s13105-018-0617-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-018-0617-1

Keywords

Navigation