Epigenetic effects of the pregnancy Mediterranean diet adherence on the offspring metabolic syndrome markers

  • David Lorite Mingot
  • Eva Gesteiro
  • Sara Bastida
  • Francisco J. Sánchez-Muniz
Mini Review

Abstract

Metabolic syndrome (MS) has a multifactorial and not yet fully clarified origin. Insulin resistance is a key element that connects all the accepted components of MS (obesity, dyslipemia, high blood pressure, and hyperglycemia). There is strong evidence that epigenetic changes during fetal development are key factors in the development of MS. These changes are induced by maternal nutrition, among different factors, affecting the intrauterine environment. The Mediterranean diet has been shown to be a healthy eating pattern that protects against the development of MS in adults. Similarly, the Mediterranean diet could have a similar action during pregnancy, protecting the fetus against the development of MS throughout life. This review assembles studies carried out, both in animals and humans, on the epigenetic modifications associated with the consumption, during pregnancy, of Mediterranean diet main components. The relationship between these modifications and the occurrence of factors involved in development of MS is also explained. In addition, the results of our group relating adherence to the Mediterranean diet with MS markers are discussed. The paper ends suggesting future actuation lines in order to increase knowledge on Mediterranean diet adherence as a prevention tool of MS development.

Keywords

Dyslipemia Epigenetics Fetal development Hypertension Hyperglycemia Insulin resistance Mediterranean diet adherence Metabolic syndrome Obesity Pregnancy diet 

Abbreviations

ALA

Alpha-linolenic acid

CVD

Cardiovascular disease

11βHD2

11-β-Hydroxysteroid dehydrogenase-2

DHA

Docosahexaenoic acid

DNMT

Dinucleotide methyltransferase

FFA

Free fatty acids

HDLc

Cholesterol transported by high-density lipoproteins

HOMA-IR

Homeostasis model assessment of insulin resistance

Hcys

Homocysteine

HDAC

Histone deacetylase

IGF

Insulin-like growth factor

IR

Insulin resistance

IUGR

Restricted intrauterine growth

MDA

Mediterranean diet adherence

MS

Metabolic syndrome

MUFA

Monounsaturated fatty acids

PCK

Phosphoenolpyruvate carboxykinase

PGC1

Peroxisome proliferator-activated receptor-gamma coactivator

RXRα

Retinoid X receptor α

PUFA

Polyunsaturated fatty acids

SAH

S-Adenosylhomocysteine

SAM

S-Adenosylmethionine

SCFA

Short-chain fatty acids

SFA

Saturated fatty acid content

T2DM

Type 2 diabetes mellitus

TG

Triglycerides

TLR

Toll-like receptors

References

  1. 1.
    Aguirre G, Ita JR, Garza R, Castilla-Cortazar I (2016) Insulin-like growth factor-1 deficiency and metabolic syndrome. J Transl Med 14:3PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Alberti K, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA et al (2009) Harmonizing the metabolic syndrome a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16):1640–1645PubMedCrossRefGoogle Scholar
  3. 3.
    Alejandro EU, Gregg B, Blandino-Rosano M, Cras-Méneur C, Bernal-Mizrachi E (2015) Natural history of β-cell adaptation and failure in type 2 diabetes. Mol Asp Med 42:19–41CrossRefGoogle Scholar
  4. 4.
    Alfaradhi M, Ozanne S (2011) Developmental programming in response to maternal overnutrition. Front Genet 2:27PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Alikhani-Koopaei R, Fouladkou F, Frey FJ, Frey BM (2004) Epigenetic regulation of 11β-hydroxysteroid dehydrogenase type 2 expression. J Clin Invest 114(8):1146–1157PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bach A, Serra-Majem L, Carrasco JL, Roman B, Ngo J, Bertomeu I et al (2006) The use of indexes evaluating the adherence to the Mediterranean diet in epidemiological studies: a review. Public Health Nutr 9(1a):132–146PubMedCrossRefGoogle Scholar
  7. 7.
    Barker DJ (1995) Fetal origins of coronary heart disease. BMJ 311(6998):171–174PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Barker D (2012) Developmental origins of chronic disease. Public Health 126(3):185–189PubMedCrossRefGoogle Scholar
  9. 9.
    Barker D, Osmond C (1988) Low birth weight and hypertension. BMJ 297(6641):134–135PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM (1993) Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 36(1):62–67PubMedCrossRefGoogle Scholar
  11. 11.
    Beaver LM, Nkrumah-Elie YM, Truong L, Barton CL, Knecht AL, Gonnerman GD et al (2017) Adverse effects of parental zinc deficiency on metal homeostasis and embryonic development in a zebrafish model. J Nutr Biochem 43:78–87PubMedCrossRefGoogle Scholar
  12. 12.
    Brenseke B, Prater MR, Bahamonde J, Gutierrez JC (2013) Current thoughts on maternal nutrition and fetal programming of the metabolic syndrome. J Pregnancy 2013:368461Google Scholar
  13. 13.
    Burdge GC, Lillycrop KA (2014) Fatty acids and epigenetics. Curr Opin Clin Nutr Metab Care 17(2):156–161PubMedCrossRefGoogle Scholar
  14. 14.
    Burgueño AL, Cabrerizo R, Mansilla NG, Sookoian S, Pirola CJ (2013) Maternal high-fat intake during pregnancy programs metabolic-syndrome-related phenotypes through liver mitochondrial DNA copy number and transcriptional activity of liver PPARGC1A. J Nutr Biochem 24(1):6–13PubMedCrossRefGoogle Scholar
  15. 15.
    Catena C, Colussi G, Nait F, Capobianco F, Sechi LA (2015) Elevated homocysteine levels are associated with the metabolic syndrome and cardiovascular events in hypertensive patients. Am J Hypertens 28(7):943–950PubMedCrossRefGoogle Scholar
  16. 16.
    Chang L, Neu J (2015) Early factors leading to later obesity: interactions of the microbiome, epigenome, and nutrition. Curr Probl Pediatr Adolesc Health Care 45(5):134–142PubMedCrossRefGoogle Scholar
  17. 17.
    Correia-Branco A, Keating E, Martel F (2015) Maternal undernutrition and fetal developmental programming of obesity: the glucocorticoid connection. Reprod Sci 22(2):138–145PubMedCrossRefGoogle Scholar
  18. 18.
    Côté S, Gagné-Ouellet V, Guay S-P, Allard C, Houde A-A, Perron P et al (2016) PPARGC1α gene DNA methylation variations in human placenta mediate the link between maternal hyperglycemia and leptin levels in newborns. Clin Epigenetics 8(1):72–84PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Das UN (2010) A defect in Δ6 and Δ5 desaturases may be a factor in the initiation and progression of insulin resistance, the metabolic syndrome and ischemic heart disease in South Asians. Lipids Health Dis 9(1):130–139PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Deng Y, Wang CC, Choy KW, Du Q, Chen J, Wang Q et al (2014) Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene 538(2):217–227PubMedCrossRefGoogle Scholar
  21. 21.
    Desai M, Jellyman J, Ross M (2015) Epigenomics, gestational programming and risk of metabolic syndrome. Int J Obes 39(4):633–641CrossRefGoogle Scholar
  22. 22.
    Dimitriadis G, Mitrou P, Lambadiari V, Maratou E, Raptis SA (2011) Insulin effects in muscle and adipose tissue. Diabetes Res Clin Pract 93:S52–S59PubMedCrossRefGoogle Scholar
  23. 23.
    Etxeberria U, Milagro FI, González-Navarro CJ, Martínez JA (2016) Papel en la obesidad de la microbiota intestinal. An Real Acad Farm 82:234–259Google Scholar
  24. 24.
    Evans JL, Lin JJ, Goldfine ID (2005) Novel approach to treat insulin resistance, type 2 diabetes, and the metabolic syndrome: simultaneous activation of PPARα, PPARγ, and PPARδ. Curr Diabetes Rev 1(3):299–307PubMedCrossRefGoogle Scholar
  25. 25.
    Finer S, Saravanan P, Hitman G, Yajnik C (2014) The role of the one-carbon cycle in the developmental origins of type 2 diabetes and obesity. Diabet Med 31(3):263–272PubMedCrossRefGoogle Scholar
  26. 26.
    Fitó M, Melander O, Martínez JA, Toledo E, Carpéné C, Corella D (2016) Advances in integrating traditional and omic biomarkers when analyzing the effects of the Mediterranean diet intervention in cardiovascular prevention. Int J Mol Sci 17(9):1469–1488PubMedCentralCrossRefGoogle Scholar
  27. 27.
    Fu Q, Yu X, Callaway CW, Lane RH, McKnight RA (2009) Epigenetics: intrauterine growth retardation (IUGR) modifies the histone code along the rat hepatic IGF-1 gene. FASEB J 23(8):2438–2449PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Genser L, Mariolo JRC, Castagneto-Gissey L, Panagiotopoulos S, Rubino F (2016) Obesity, type 2 diabetes, and the metabolic syndrome: pathophysiologic relationships and guidelines for surgical intervention. Surg Clin North Am 96(4):681–701PubMedCrossRefGoogle Scholar
  29. 29.
    Gensollen T, Iyer SS, Kasper DL, Blumberg RS (2016) How colonization by microbiota in early life shapes the immune system. Science 352(6285):539–544PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Gesteiro E, Bernal BR, Bastida S, Sánchez-Muniz FJ (2012) Maternal diets with low healthy eating index or mediterranean diet adherence scores are associated with high cord-blood insulin levels and insulin resistance markers at birth. Eur J Clin Nutr 66(9):1008–1015PubMedCrossRefGoogle Scholar
  31. 31.
    Gesteiro E, Bastida S, Bernal BR, Sánchez-Muniz FJ (2015) Adherence to Mediterranean diet during pregnancy and serum lipid, lipoprotein and homocysteine concentrations at birth. Eur J Nutr 54(7):1191–1199PubMedCrossRefGoogle Scholar
  32. 32.
    Gesteiro E, Sánchez-Muniz FJ, Espárrago Rodilla M, Rodríguez Bernal B, Bastida S (2015) Mediterranean diet and pregnancy. In: Preedy V, Watson RR (eds) The Mediterranean diet: an evidence-based approach. Elsevier, Amsterdam, pp. 491-503Google Scholar
  33. 33.
    Gesteiro E, Sánchez-Muniz FJ, Ortega-Azorín C, Guillén M, Corella D, Bastida S (2016) Maternal and neonatal FTO rs9939609 polymorphism affect insulin sensitivity markers and lipoprotein profile at birth in appropriate-for-gestational-age term neonates. J Physiol Biochem 72(2):169–181PubMedCrossRefGoogle Scholar
  34. 34.
    Gesteiro E, Sánchez-Muniz FJ, Bastida S (2017) Hypercortisolaemia and hyperinsulinaemia interaction and their impact upon insulin resistance/sensitivity markers at birth. In: Prof. Ana Colette Maurício (ed) Umbilical cord blood banking for clinical application and regenerative medicine: InTech. Rijeka-Croatia, pp. 69–98Google Scholar
  35. 35.
    Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C et al (2011) Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 60(5):1528–1534PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Gómez-Abellán P, Hernández-Morante J, Luján J, Madrid J, Garaulet M (2008) Clock genes are implicated in the human metabolic syndrome. Int J Obes 32(1):121–128CrossRefGoogle Scholar
  37. 37.
    Goodspeed D, Seferovic MD, Holland W, Mcknight RA, Summers SA, Branch DW et al (2015) Essential nutrient supplementation prevents heritable metabolic disease in multigenerational intrauterine growth-restricted rats. FASEB J 29(3):807–819PubMedCrossRefGoogle Scholar
  38. 38.
    Green BB, Armstrong DA, Lesseur C, Paquette AG, Guerin DJ, Kwan LE et al (2015) The role of placental 11-beta hydroxysteroid dehydrogenase type 1 and type 2 methylation on gene expression and infant birth weight. Biol Reprod 92(6):149PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Guerra-Shinohara EM, Morita OE, Peres S, Pagliusi RA, Neto LFS, D'Almeida V et al (2004) Low ratio of S-adenosylmethionine to S-adenosylhomocysteine is associated with vitamin deficiency in Brazilian pregnant women and newborns. Am J Clin Nutr 80(5):1312–1321PubMedGoogle Scholar
  40. 40.
    Hale MW, Spencer SJ, Conti B, Jasoni CL, Kent S, Radler ME et al (2015) Diet, behavior and immunity across the lifespan. Neurosci Biobehav Rev 58:46–62PubMedCrossRefGoogle Scholar
  41. 41.
    Hales CN, Barker DJ (1992) Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35(7):595–601PubMedCrossRefGoogle Scholar
  42. 42.
    Hales C, Barker D, Clark P, Cox L, Fall C, Osmond C et al (1991) Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 303(6809):1019–1022PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105(44):17046–17049PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hoile SP, Irvine NA, Kelsall CJ, Sibbons C, Feunteun A, Collister A et al (2013) Maternal fat intake in rats alters 20: 4n-6 and 22: 6n-3 status and the epigenetic regulation of Fads2 in offspring liver. J Nutr Biochem 24(7):1213–1220PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Jou M-Y, Philipps AF, Lönnerdal B (2010) Maternal zinc deficiency in rats affects growth and glucose metabolism in the offspring by inducing insulin resistance postnatally. J Nutr 140(9):1621–1627PubMedCrossRefGoogle Scholar
  46. 46.
    Jou M-Y, Lönnerdal B, Philipps AF (2012) Maternal zinc restriction affects postnatal growth and glucose homeostasis in rat offspring differently depending upon adequacy of their nutrient intake. Pediatr Res 71(3):228–234PubMedCrossRefGoogle Scholar
  47. 47.
    Kahn M (2014) Can we safely target the WNT pathway? Nat Rev Drug Discov 13(7):513–532PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kelsall CJ, Hoile SP, Irvine NA, Masoodi M, Torrens C, Lillycrop KA et al (2012) Vascular dysfunction induced in offspring by maternal dietary fat involves altered arterial polyunsaturated fatty acid biosynthesis. PLoS One 7(4):e34492Google Scholar
  49. 49.
    Kulkarni A, Dangat K, Kale A, Sable P, Chavan-Gautam P, Joshi S (2011) Effects of altered maternal folic acid, vitamin B 12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats. PLoS One 6(3):e17706Google Scholar
  50. 50.
    Lakshmy R (2013) Metabolic syndrome: role of maternal undernutrition and fetal programming. Rev Endocr Metab Disord 14(3):229–240PubMedCrossRefGoogle Scholar
  51. 51.
    Lam DW, LeRoith D (2000) Metabolic syndrome. [Updated 2015 May 19; cited 2017 Feb 8]. In: De Groot LJ, Chrousos G, Dungan K, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc. Available from: https://www.ncbi.nlm.nih.gov/books/NBK278936/
  52. 52.
    Lee H-S (2015) Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Nutrients 7(11):9492–9507PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Lee H-S, Barraza-Villarreal A, Biessy C, Duarte-Salles T, Sly PD, Ramakrishnan U et al (2014) Dietary supplementation with polyunsaturated fatty acid during pregnancy modulates DNA methylation at IGF2/H19 imprinted genes and growth of infants. Physiol Genomics 46(23):851–857PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Leikin-Frenkel AI (2016) Is there a role for alpha-linolenic acid in the fetal programming of health? J Clin Med 5(4):40–49PubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lie S, Morrison JL, Williams-Wyss O, Suter CM, Humphreys DT, Ozanne SE et al (2014) Impact of embryo number and maternal undernutrition around the time of conception on insulin signaling and gluconeogenic factors and microRNAs in the liver of fetal sheep. Am J Physiol Endocrinol Metab 306(9):E1013–E1024PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Lillycrop KA, Burdge GC (2012) Epigenetic mechanisms linking early nutrition to long term health. Best Pract Res Clin Endocrinol Metab 26(5):667–676PubMedCrossRefGoogle Scholar
  57. 57.
    Ling C, Del Guerra S, Lupi R, Rönn T, Granhall C, Luthman H et al (2008) Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51(4):615–622PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Liu S, Downes M, Evans RM (2015) Metabolic regulation by nuclear receptors. In: Nakao K, Minato N, Uemoto S (eds) Innovative medicine. Springer, Tokyo, pp 25–37CrossRefGoogle Scholar
  59. 59.
    Livingstone C, Borai A (2014) Insulin-like growth factor-II: its role in metabolic and endocrine disease. Clin Endocrinol 80(6):773–781CrossRefGoogle Scholar
  60. 60.
    López-Legarrea P, Fuller NR, Zulet MA, Martínez JA, Caterson ID (2014) The influence of Mediterranean, carbohydrate and high protein diets on gut microbiota composition in the treatment of obesity and associated inflammatory state. Asia Pac J Clin Nutr 23(3):360–368PubMedGoogle Scholar
  61. 61.
    Luna-Luna M, Medina-Urrutia A, Vargas-Alarcón G, Coss-Rovirosa F, Vargas-Barrón J, Pérez-Méndez Ó (2015) Adipose tissue in metabolic syndrome: onset and progression of atherosclerosis. Arch Med Res 46(5):392–407PubMedCrossRefGoogle Scholar
  62. 62.
    Luo L, Liu M (2016) Adipose tissue in control of metabolism. J Endocrinol 231(3):R77–R99PubMedCrossRefGoogle Scholar
  63. 63.
    Makki K, Froguel P, Wolowczuk I (2013) Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm 2013Google Scholar
  64. 64.
    Martínez-González MA, Salas-Salvadó J, Estruch R, Corella D, Fitó M, Ros E et al (2015) Benefits of the Mediterranean diet: insights from the PREDIMED study. Prog Cardiovasc Dis 58(1):50–60PubMedCrossRefGoogle Scholar
  65. 65.
    Masuyama H, Hiramatsu Y (2012) Effects of a high-fat diet exposure in utero on the metabolic syndrome-like phenomenon in mouse offspring through epigenetic changes in adipocytokine gene expression. Endocrinology 153(6):2823–2830PubMedCrossRefGoogle Scholar
  66. 66.
    McMillen IC, Robinson JS (2005) Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 85(2):571–633PubMedCrossRefGoogle Scholar
  67. 67.
    Meher A, Joshi A, Joshi S (2014) Differential regulation of hepatic transcription factors in the Wistar rat offspring born to dams fed folic acid, vitamin B 12 deficient diets and supplemented with omega-3 fatty acids. PloS One 9(2):e90209Google Scholar
  68. 68.
    Mesías M, Seiquer I, Navarro MP (2015) The Mediterranean diet and mineral composition. In: Preedy V, Watson RR (eds) The Mediterranean diet: an evidence-based approach. Elsevier, Amsterdam, pp 185–198CrossRefGoogle Scholar
  69. 69.
    Miao X, Sun W, Fu Y, Miao L, Cai L (2013) Zinc homeostasis in the metabolic syndrome and diabetes. Front Med 7(1):31–52PubMedCrossRefGoogle Scholar
  70. 70.
    Milagro FI, Gómez-Abellán P, Campión J, Martínez JA, Ordovás JM, Garaulet M (2012) CLOCK, PER2 and BMAL1 DNA methylation: association with obesity and metabolic syndrome characteristics and monounsaturated fat intake. Chronobiol Int 29(9):1180–1194PubMedCrossRefGoogle Scholar
  71. 71.
    Mispireta M, Caulfield L, Zavaleta N, Merialdi M, Putnick D, Bornstein M et al (2017) Effect of maternal zinc supplementation on the cardiometabolic profile of Peruvian children: results from a randomized clinical trial. J Dev Orig Health Dis 8(1):56–64PubMedCrossRefGoogle Scholar
  72. 72.
    Ngo S, Li X, O’Neill R, Bhoothpur C, Gluckman P, Sheppard A (2014) Elevated S-adenosylhomocysteine alters adipocyte functionality with corresponding changes in gene expression and associated epigenetic marks. Diabetes 63(7):2273–2283PubMedCrossRefGoogle Scholar
  73. 73.
    Niculescu MD, Lupu DS, Craciunescu CN (2013) Perinatal manipulation of α-linolenic acid intake induces epigenetic changes in maternal and offspring livers. FASEB J 27(1):350–358PubMedCrossRefGoogle Scholar
  74. 74.
    Okamoto H, Cavino K, Na E, Krumm E, Kim SY, Cheng X et al (2017) Glucagon receptor inhibition normalizes blood glucose in severe insulin-resistant mice. Proc Natl Acad Sci U S A 114(10):2753–2758PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Ortega-Azorín C, Sorlí JV, Asensio EM, Coltell O, Martínez-González MÁ, Salas-Salvadó J et al (2012) Associations of the FTO rs9939609 and the MC4R rs17782313 polymorphisms with type 2 diabetes are modulated by diet, being higher when adherence to the Mediterranean diet pattern is low. Cardiovasc Diabetol 11(1):137–148PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Padmavathi IJ, Kishore YD, Venu L, Ganeshan M, Harishankar N, Giridharan N et al (2009) Prenatal and perinatal zinc restriction: effects on body composition, glucose tolerance and insulin response in rat offspring. Exp Physiol 94(6):761–769PubMedCrossRefGoogle Scholar
  77. 77.
    Panchal SK, Wanyonyi S, Brown L (2017) Selenium, vanadium, and chromium as micronutrients to improve metabolic syndrome. Curr Hypertens Rep 19(3):10PubMedCrossRefGoogle Scholar
  78. 78.
    Parnell JA, Reimer RA (2012) Prebiotic fiber modulation of the gut microbiota improves risk factors for obesity and the metabolic syndrome. Gut Microbes 3(1):29–34PubMedCrossRefGoogle Scholar
  79. 79.
    Paul HA, Bomhof MR, Vogel HJ, Reimer RA (2016) Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats. Sci Rep 6:20683PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E et al (2014) In utero undernourishment perturbs the adult sperm methylome and is linked to metabolic disease transmission. Science (New York, NY) 345(6198):1255903PubMedCentralCrossRefGoogle Scholar
  81. 81.
    Rajia S, Chen H, Morris MJ (2010) Maternal overnutrition impacts offspring adiposity and brain appetite markers-modulation by postweaning diet. J Neuroendocrinol 22(8):905–914PubMedGoogle Scholar
  82. 82.
    Ramasamy I (2016) Update on the molecular biology of dyslipidemias. Clin Chim Acta 454:143–185PubMedCrossRefGoogle Scholar
  83. 83.
    Reaven GM (1988) Role of insulin resistance in human disease. Diabetes 37(12):1595–1607PubMedCrossRefGoogle Scholar
  84. 84.
    Remely M, Haslberger AG (2016) The microbial epigenome in metabolic syndrome. Mol Asp Med 54:71–77CrossRefGoogle Scholar
  85. 85.
    Ren J, Anversa P (2015) The insulin-like growth factor I system: physiological and pathophysiological implication in cardiovascular diseases associated with metabolic syndrome. Biochem Pharmacol 93(4):409–417PubMedCrossRefGoogle Scholar
  86. 86.
    Reynolds RM (2013) Glucocorticoid excess and the developmental origins of disease: two decades of testing the hypothesis-2012 Curt Richter award winner. Psychoneuroendocrinology 38(1):1–11PubMedCrossRefGoogle Scholar
  87. 87.
    Rosario J, Gomez M, Anbu P (2008) Does the maternal micronutrient deficiency (copper or zinc or vitamin E) modulate the expression of placental 11 β hydroxysteroid dehydrogenase-2 per se predispose offspring to insulin resistance and hypertension in later life? Indian J Physiol Pharmacol 52(4):355–365PubMedGoogle Scholar
  88. 88.
    Rother E, Kuschewski R, Alcazar MAA, Oberthuer A, Bae-Gartz I, Vohlen C et al (2011) Hypothalamic JNK1 and IKKβ activation and impaired early postnatal glucose metabolism after maternal perinatal high-fat feeding. Endocrinology 153(2):770–781PubMedCrossRefGoogle Scholar
  89. 89.
    Samson SL, Garber AJ (2014) Metabolic syndrome. Endocrinol Metab Clin N Am 43(1):1–23CrossRefGoogle Scholar
  90. 90.
    Sánchez-Muniz FJ, Gesteiro E, Espárrago Rodilla M, Rodríguez Bernal B, Bastida S (2013) La alimentación de la madre durante el embarazo condiciona el desarrollo pancreático, el estatus hormonal del feto y la concentración de biomarcadores al nacimiento de diabetes mellitus y síndrome metabólico. Nutr Hosp 28(2):250–274PubMedGoogle Scholar
  91. 91.
    Schinner S (2009) Wnt-signalling and the metabolic syndrome. Horm Metab Res 41(2):159–163Google Scholar
  92. 92.
    Schröder H, Fitó M, Estruch R, Martínez-González MA, Corella D, Salas-Salvadó J et al (2011) A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J Nutr 141(6):1140–1145PubMedCrossRefGoogle Scholar
  93. 93.
    Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, Bispham J et al (2007) DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci U S A 104(49):19351–19356PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Sookoian S, Pirola CJ (2013) Epigenetics of insulin resistance: an emerging field in translational medicine. Curr Diab Rep 13(2):229–237PubMedCrossRefGoogle Scholar
  95. 95.
    Sreckovic B, Sreckovic VD, Soldatovic I, Colak E, Sumarac-Dumanovic M, Janeski H, et al (2017) Homocysteine is a marker for metabolic syndrome and atherosclerosis. Diabetes Metab Syndr 11(3):179–182Google Scholar
  96. 96.
    Stančáková A, Laakso M (2014) Genetics of metabolic syndrome. Rev Endocr Metab Disord 15(4):243–252PubMedCrossRefGoogle Scholar
  97. 97.
    Strakovsky RS, Zhang X, Zhou D, Pan YX (2011) Gestational high fat diet programs hepatic phosphoenolpyruvate carboxykinase gene expression and histone modification in neonatal offspring rats. J Physiol 589(11):2707–2717PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Sugden MC, Holness MJ (2008) Role of nuclear receptors in the modulation of insulin secretion in lipid-induced insulin resistance. Biochem Soc Trans 36(5):891–900PubMedCrossRefGoogle Scholar
  99. 99.
    Suter M, Bocock P, Showalter L, Hu M, Shope C, McKnight R et al (2011) Epigenomics: maternal high-fat diet exposure in utero disrupts peripheral circadian gene expression in nonhuman primates. FASEB J 25(2):714–726PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Takaya J, Iharada A, Okihana H, Kaneko K (2011) Magnesium deficiency in pregnant rats alters methylation of specific cytosines in the hepatic hydroxysteroid dehydrogenase-2 promoter of the offspring. Epigenetics 6(5):573–578PubMedCrossRefGoogle Scholar
  101. 101.
    Trichopoulou A, Costacou T, Bamia C, Trichopoulos D (2003) Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med 348:2599–2608PubMedCrossRefGoogle Scholar
  102. 102.
    Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E et al (2005) Obesity and metabolic syndrome in circadian clock mutant mice. Science 308(5724):1043–1045PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Van den Broek M, Leermakers ET, Jaddoe VW, Steegers EA, Rivadeneira F, Raat H et al (2015) Maternal dietary patterns during pregnancy and body composition of the child at age 6 y: the generation R study. Am J Clin Nutr 102(4):873–880PubMedCrossRefGoogle Scholar
  104. 104.
    Van Dijk SJ, Tellam RL, Morrison JL, Muhlhausler BS, Molloy PL (2015) Recent developments on the role of epigenetics in obesity and metabolic disease. Clin Epigenetics 7(1):66–78PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Van Dijk SJ, Zhou J, Peters TJ, Buckley M, Sutcliffe B, Oytam Y et al (2016) Effect of prenatal DHA supplementation on the infant epigenome: results from a randomized controlled trial. Clin Epigenetics 8(1):114–126PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Venu L, Padmavathi IJ, Kishore YD, Bhanu NV, Rao KR, Sainath PB et al (2008) Long-term effects of maternal magnesium restriction on adiposity and insulin resistance in rat pups. Obesity 16(6):1270–1276PubMedCrossRefGoogle Scholar
  107. 107.
    Welty FK, Alfaddagh A, Elajami TK (2016) Targeting inflammation in metabolic syndrome. Transl Res 167(1):257–280PubMedCrossRefGoogle Scholar
  108. 108.
    Wong CP, Ho E (2012) Zinc and its role in age-related inflammation and immune dysfunction. Mol Nutr Food Res 56(1):77–87PubMedCrossRefGoogle Scholar
  109. 109.
    Wong CP, Rinaldi NA, Ho E (2015) Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation. Mol Nutr Food Res 59(5):991–999PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Wu H, Deng X, Shi Y, Su Y, Wei J, Duan H (2016) PGC-1α, glucose metabolism and type 2 diabetes mellitus. J Endocrinol 229(3):R99–R115PubMedCrossRefGoogle Scholar
  111. 111.
    Yaghmaei P, Esfahani-Nejad H, Ahmadi R, Hayati-Roodbari N, Ebrahim-Habibi A (2013) Maternal zinc intake of Wistar rats has a protective effect in the alloxan-induced diabetic offspring. J Physiol Biochem 69(1):35–43PubMedCrossRefGoogle Scholar
  112. 112.
    Yakub M, Schulze KJ, Khatry SK, Stewart CP, Christian P, West KP (2014) High plasma homocysteine increases risk of metabolic syndrome in 6 to 8 year old children in rural Nepal. Nutrients 6(4):1649–1661PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Yang K-f, Cai W, Xu J-l, Shi W (2012) Maternal high-fat diet programs Wnt genes through histone modification in the liver of neonatal rats. J Mol Endocrinol 49(2):107–114PubMedGoogle Scholar
  114. 114.
    Ye J, Wu W, Li Y, Li L (2017) Influences of the gut microbiota on DNA methylation and histone modification. Dig Dis Sci 62(5):1155–1164PubMedCrossRefGoogle Scholar
  115. 115.
    Zhang Q, Sun X, Xiao X, Zheng J, Li M, Yu M et al (2017) Dietary chromium restriction of pregnant mice changes the methylation status of hepatic genes involved with insulin signaling in adult male offspring. PloS One 12(1):e0169889Google Scholar

Copyright information

© University of Navarra 2017

Authors and Affiliations

  • David Lorite Mingot
    • 1
  • Eva Gesteiro
    • 1
    • 2
  • Sara Bastida
    • 1
  • Francisco J. Sánchez-Muniz
    • 1
  1. 1.Departamento de Nutrición y Bromatología I (Nutrición), Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
  2. 2.ImFINE Research Group, Departamento de Salud y Rendimiento Humano, Facultad de Ciencias de la Actividad Física y del Deporte-INEFUniversidad Politécnica de MadridMadridSpain

Personalised recommendations