Food additives, contaminants and other minor components: effects on human gut microbiota—a review

Abstract

Gut bacteria play an important role in several metabolic processes and human diseases, such as obesity and accompanying co-morbidities, such as fatty liver disease, insulin resistance/diabetes, and cardiovascular events. Among other factors, dietary patterns, probiotics, prebiotics, synbiotics, antibiotics, and non-dietary factors, such as stress, age, exercise, and climatic conditions, can dramatically impact the human gut microbiota equilibrium and diversity. However, the effect of minor food constituents, including food additives and trace contaminants, on human gut microbiota has received less attention. Consequently, the present review aimed to provide an objective perspective of the current knowledge regarding the impacts of minor food constituents on human gut microbiota and consequently, on human health.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Abdou-Donia MB, El-Masry EM, Abdel-Rahman AA, McLendon RE, Schiffman SS (2008) Splenda alters gut microflora and increases intestinal p-glycoprotein and cytohrome p-450 in male rats. J Toxicol Env Heal A 21:1415–1429

    Article  CAS  Google Scholar 

  2. 2.

    Abdou RM, Zhu L, Baker RD, Baker SS (2016) Gut microbiota of nonalcoholic fatty liver disease. Dig Dis Sci 61:1268–1281

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Ajslev TA, Andersen CS, Gamborg M, Sorensen TIA, Jess T (2011) Childhood overweight after establishments of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int J Obes 35:522–529

    CAS  Article  Google Scholar 

  4. 4.

    Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML et al (2009) Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 77:2367–2375

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Arboleya S, Sanchez B, Milani C, Duranti S, Solis G et al (2015) Intestinal microbiota development in preterm neonates and effects of perinatal antibiotics. J Pediatr 166:538–544

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Balamurugan R, Mary RR, Chittaranjan S, Jancy H, Shobana Devi R et al (2010) Low levels of lactobacilli in women with iron-deficiency anaemia in south India. Br J Nutr 104:931–934

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Baynes RE, Dedonder K, Kissell L, Mzyk D, Marmulak T et al (2016) Health concerns and management of select veterinary drug residues. Food Chem Toxicol 88:112–122

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Biesalski HK (2016) Nutrition meets the microbiome: micronutrients and the microbiota. Ann New York Acad Sci 1372:53–64

    Article  Google Scholar 

  10. 10.

    Borukas A, Moloney RD, Dinan TG, Cryan JF (2015) Microbiota regulation of the mammalian gut-brain axis. Adv Appl Microbiol 91:1–62

    Article  Google Scholar 

  11. 11.

    Brown CC, Noelle RJ (2015) Seeing through the dark: new insights into the immune regulatory functions of vitamin A. Eur J Immunol 45:1287–1295

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Brown JM, Hanzen SL (2015) The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annu Rev. Med 66:343–359

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Brugman S, Klatter FA, Visser JT, Wildeboer-Veloo AC, Harmsen HJ et al (2006) Antibiotic treatment partially protects against type 1 diabetes in the bio-breeding diabetes-prone rat: is the gut flora involved in the development of type 1 diabetes? Diabetologia 49:2105–2108

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Caesar R, Reigstad CS, Bäckhed HK, Reinhardt C, Ketonen M et al (2012) Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut 61:1701–1707

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Canesso MCC, Lacerda NL, Ferreira CM, Gonçalves JL, Almeida D et al (2014) Comparing the effects of acute alcohol consumption in germ-free and conventional mice: the role of the gut microbiota. BMC Microbiol 14:240–249

    Article  CAS  Google Scholar 

  16. 16.

    Cani P, Everard A (2016) Talking microbes: when gut bacteria interact with diet and host organs. Mol Nutr Food Res 60:58–66

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Chaplin A, Parra P, Serra F, Palou A (2015) Conjugated linoleic acid supplementation under a high-fat diet modulates stomach protein expression and intestinal microbiota in adult mice. PLoS One 10:e125091

    Google Scholar 

  18. 18.

    Chassaing B, Gewirtz AT (2016) Has provoking microbiota aggression driven the obesity epidemic? Bioassays 38:122–128

    Article  Google Scholar 

  19. 19.

    Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S et al (2015) Dietary emulsifiers impact the mouse guy microbiota promoting colitis and metabolic syndrome. Nature 519:92–96

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Choi JJ, Eum SY, Rampersaud E, Daunert S, Abreu MT et al (2013) Exercise attenuates PCB-induced changes in mouse gut microbiome. Environ Health Perspect 121:725–730

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Cho I, Yamanishi S, Cox L, Methé BA, Zavadi J et al (2012) Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488:621–626

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Choy YY, Quifer-Rada P, Holstege DM, Frese SA, Calvert CC et al (2014) Phenolic metabolites and substantial microbiome changes in pig feces by ingesting grape seed proanthocynidins. Food Funct 5:2298–2308

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Claesson MJ, Cusack S, O Sullivan O, Greene-Diniz R, de Weerd H et al (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 108:4586–4591

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Claus SP, Ellero SL, Berger B, Krause L, Bruttin A et al (2011) Colonization-induced host-gut microbial metabolic interaction. Mbio 2:e00271–e00210

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25.

    Claus SP, Guillou H, Ellero-Simatos S (2016) The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes 2:16,003

    Article  Google Scholar 

  26. 26.

    Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z et al (2015) The microbiome of uncontacted Amerindians. Sci Adv 1:e1500183

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. 27.

    Clemente JC, Ursell LK, Wegener Parfrey L, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Conlon MA, Bird AR (2015) The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7:17–44

    Article  CAS  Google Scholar 

  29. 29.

    Cowan TE, Palmnas M, Reiner R, Ardell K, Yang JJ et al (2013) Artificial sweetener consumption differentially affects the gut microbiota-host metabolic interactions. FASEB J 27:224–227

    Google Scholar 

  30. 30.

    Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM et al (2014) Altering the intestinal microbiota during a critical development window has lasting metabolic consequences. Cell 158:705–721

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Cresci GA, Bawden E (2016) Gut microbiome: what we do and don’t know. Nutr Clin Pract 30:734–746

    Article  CAS  Google Scholar 

  32. 32.

    Daly K, Darby AC, Hall N, Nau A, Bravo D et al (2014) Dietary supplementation with lactose or artificial sweetener enhances swine gut Lactobacillus population abundance. Br J Nutrit 111:S30–S35

    CAS  Article  Google Scholar 

  33. 33.

    De Filippo C, Cavalieri D, Di Paola M, Ramozzotti M, Poullet JB et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14,691–14,696

    Article  Google Scholar 

  34. 34.

    Dethlefsen L, Relman DA (2011) Imcomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA 108:4554–4561

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Devroka S, Wang Y, Much MW, Leone V, Fehlner-Peach H et al (2012) Dietary-fat-induced taurocholic promotes pathobiont expansion and colitis in II10-/- mice. Nature 487:104–108

    Article  CAS  Google Scholar 

  36. 36.

    Endo A, Pärtty A, Kalliomäki M, Isolauri E, Salminen S (2014) Long-term monitoring of the human intestinal microbiota from the 2nd week to 13 years of age. Anaerobe 28:149–156

    PubMed  Article  Google Scholar 

  37. 37.

    Etxeberria U, Arias N, Boqué N, Macarulla MT, Portillo MP et al (2015) Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J Nutr Biochem 26:651–660

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Etxeberria U, Arias N, Boqué N, Macarulla MT, Portillo MP et al (2015) Shifts in microbiota species and fermentation products in a dietary model enriched in fat and sucrose. Benef Microbes 6:97–111

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Etxeberria U, Arias N, Boqué N, Romo-Hualde A, Macarulla MT et al (2015) Metabolic faecal fingerprinting of trans-resveratrol and quercetin following a high-fat sucrose dietary model using liquid chromatography coupled to high-resolution mass spectrometry. Food Funct 6:2758–2767

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Etxeberria U, Castilla-Madrigal R, Lostao MP, Martinez JA, Milagro FI (2015) Trans-resveratrol induces a potential anti-lipogenic effect in lipopolysaccharide-stimulated enterocytes. Cell Mol Biol 61:9–16

    CAS  PubMed  Google Scholar 

  41. 41.

    Etxeberria U, Hijona E, Aguirre L, Milagro FI, Bujanda L et al (2017) Pterostilbene-induced changes in gut microbiota composition in relation to obesity. Mol Nutr Food Res 61. doi:10.1002/mnfr.201500906

  42. 42.

    Etxeberria U, Fernandez-Quintela A, Milagro FI, Aguirre L, Martinez JA et al (2013) Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. J Agric Food Chem 61:9517–1933

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Foreyt R, Kleinman R, Brown RJ, Lindstrom R (2012) The use of low-calorie sweeteners by children: implications for weight management. J Nutr 142:S1155–S1162

    Article  CAS  Google Scholar 

  44. 44.

    Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatellier E et al (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528:262–266

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Foster JA, Neufeld KAM (2013) Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36:305–312

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Funkhouser LJ, Bordenstein SR (2013) Mom knows best: the universality of maternal microbial transmission. PLoS Biol 11:e1001631

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Gibson MK, Crofts TS, Dantas G (2015) Antibiotics and the developing infant gut microbiota and resistome. Curr Opin Microbiol 27:51–56

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Greenwood C, Morrow AL, Lagomarcino AJ, Altaye M, Taft DH et al (2014) Early empiric antibiotic use in preterm infants is associated with lower bacterial diversity and higher relative abundance of Enterobacter. J Pediatr 165:23–29

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Gupta S, Allen-Vercoe E, Petrof E (2016) Fecal microbiota transplantation: in perspective. Therap Adv Gastroenterol 9:229–239

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Hidalgo M, Oruna-Concha MJ, Kolida S, Walton GE, Kallithraka S et al (2012) Metabolism of anthocyanins by human gut microbiota and their influence on gut bacterial growth. J Agric Food Chem 60:3882–3890

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Hollister E, Gao C, Versalovic J (2014) Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 146:1449–1458

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER et al (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155:1451–1463

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Hu Y, Yang X, Qin J, Lu N, Cheng G et al (2013) Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat Commun 4:2151

    PubMed  Google Scholar 

  54. 54.

    Huang J, Chen L, Xue B, Liu Q, Ou S et al (2016) Different flavonoids can shape unique but microbiota profile in vitro. J Food Sci 81:H2273–H2279

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Article  CAS  Google Scholar 

  56. 56.

    Humphreys KJ, Conlon MA, Young GP, Topping DL, Hu Y et al (2014) Dietary manipulation of oncogenic microRNA expression in human rectal mucosa: a randomized trial. Cancer Prev Res 7:786–795

    CAS  Article  Google Scholar 

  57. 57.

    Huse SM, Ye Y, Zhou Y, Fodor AA (2012) A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS One 7:e34242

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Jakobson HE, Jerberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK et al (2010) Short-term antibiotic treatment has differing long-terms impacts on the human throat and gut microbiome. PLOS One 5:e9836

    Article  CAS  Google Scholar 

  59. 59.

    Jeffery IB, Lynch DB, O Tolle PW (2016) Composition and temporal stability of the gut microbiota in older persons. ISME J 10:170–182

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Jia W, Zheng X, Zhao A, Xie G, Chi Y et al (2013) Melamine-induced renal toxicity is mediated by the gut microbiota. Sci Transl Med 13:172ra22

    Google Scholar 

  61. 61.

    Johns DJ, Hartmann-Boyce J, Jebb SA, Aveyard P (2014) Diet or exercise interventions vs combined behavioral weight management programs: a systematic review and meta-analysis of direct comparisons. J Acad Nutr Diet 114:1557–1568

    PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Joly C, Gay-Quéheillard J, Léké A, Chardon K, Delanaud S et al (2013) Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the simulator of the human intestinal microbial ecosystem (SHIME®) and in the rat. Environ Sci Pollut Res 20:2726–2734

    CAS  Article  Google Scholar 

  63. 63.

    Jones ML, Ganopolsky JG, Martoni CJ, Labbé A, Prakash S (2014) Emerging science of the human microbiome. Gut Microb 5:446–457

    Article  Google Scholar 

  64. 64.

    Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 49:99–103

    Article  CAS  Google Scholar 

  65. 65.

    Koenig JE, Spor A, Scalfone N, Fricker AD, Stobaugh J et al (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA 108:4578–4585

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Koeth RA, Wang Z, Levison BS, Buffa JA, Org E et al (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–585

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Laniro G, Tilg H, Gasbarrini A (2016) Antibiotics as deep modulators of gut microbiota: between good and evil. Gut 65:1906–1915

    Article  CAS  Google Scholar 

  68. 68.

    Le Chatellier E, Nielsen T, Qin J, Prifti E, Hildebrand F et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546

    Article  CAS  Google Scholar 

  69. 69.

    Lee CY (2013) Challenges in providing credible scientific evidence of health benefits of dietary polyphenols. J Funct Foods 5:524–526

    CAS  Article  Google Scholar 

  70. 70.

    Leung C, Rivera L, Furness JB, Angus PW (2016) The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol 13:412–425

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Li H, Jia W (2012) Cometabolism of microbes and host: implications for drug metabolism and drug-induced toxicity. Clin Pharmacol Ther 94:574–581

    Article  CAS  Google Scholar 

  72. 72.

    Li Z, Henning SM, Lee RP, Lu QY, Summanen PH et al (2015) Pomegranate extract induces metabolite formation and changes stool microbiota in healthy volunteers. Food Funct 6:1487–1495

    Google Scholar 

  73. 73.

    Lin J (2011) Effect of antibiotic growth promoters on intestinal microbiota in food animals: a novel model for studying the relationship between gut microbiota and human obesity? Front Microbiol 2:1–3

    CAS  Google Scholar 

  74. 74.

    Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Manichahn C, Reeder J, Gibert P, Varela E, Llopis M et al (2010) Reshaping the gut microbiome with bacterial transplantation and antibiotic intake. Genome Res 20:1411–1419

    Article  CAS  Google Scholar 

  76. 76.

    Martinez JA, Etxeberria U, Galar A, Milagro FI (2013) Role of polyphenols and inflammatory processes on disease progression mediated by the gut microbiota. Rejuvenation Res 16:435–437

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Martin FPJ, Montoliu I, Nagy K, Moco S, Collino S et al (2012) Specific dietary preferences are linked to differing gut microbial metabolic activity in response to dark chocolate intake. J Proteome Res 11:6252–6263

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Mikkelsen KH, Frost M, Bahl MI, Licht TR, Jensen US et al (2015) Effect of antibiotics on gut microbiota, gut hormones and glucose metabolism. PLoS One 10:e0142352

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. 79.

    Mikkelsen KH, Knop FK, Frost M, Hallas J, Pottegard A (2015) Use of antibiotics and risk of type 2 diabetes: a population-based case-control study. J Clin Endocrinol Metab 100:3633–3640

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Murphy EF, Clarke SF, Marques TM, Hill C, Stanton C et al (2013) Strategies for targeting obesity and metabolic health? Gut Microb 4:48–51

    Article  Google Scholar 

  81. 81.

    Murphy R, Stewart AW, Braithwaite I, Beasley R, Hancox RJ et al (2014) Antibiotic treatment during infancy and increased body mess index in boys: an international cross-sectional study. Int J Obes 38:1115–1119

    Article  Google Scholar 

  82. 82.

    Nobel YR, Cox LM, Kirigin FF, Bokulich NA, Yamanishi S et al (2015) Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nat Commun 6:4786

    Article  Google Scholar 

  83. 83.

    Norris GH, Jiang C, Ryan J, Porter CM, Blesso CN (2016) Milk sphingomyelin improves lipid metabolism and alters gut in high fat diet-fed mice. J Nutr Biochem 30:93–101

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F et al (2016) The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8:78

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  85. 85.

    Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J et al (2014) Immunoglobulin A coating indentifies colitogenic bacteria in inflammatory dowel diseases. Cell 158:1000–1010

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Palmnäs MS, Cowan TE, Bomhof MR, Su J, Reimer RA et al (2014) Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rats. PLoS One 9:e109841

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  87. 87.

    Panda S, El Khader I, Casellas F, Lopez Vivancos J, García Cors M et al (2014) Short-term effect of antibiotics on human gut microbiota. PLoS One 9:e95476

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. 88.

    Penders J, Stobberingh EE, Savelkoul PHM, Wolffs PFG (2013) The human microbiome as a reservoir of antimicrobial resistance. Front Microbiol 4:87

    PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Pepino MY (2015) Metabolic effects of non-nutritive sweeteners. Physiol Behav 152:450–455

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Perez-Chanona E, Trinchieri G (2016) The role of microbiota in cancer therapy. Curr Opin Immunol 39:75–81

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Perez-Cobas AE, Gosalbes MJ, Friedrichs A, Knecht H, Artacho A et al (2013) Gut microbioma disturbance during antibiotic therapy: a multi-omic approach. Gut 62:1591–1601

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Pinyayev TS, Kohan MJ, Herbin-David K, Creed JT, Thomas DJ (2011) Preabsorptive metabolism of sodium arsenate by anaerobic microbiota of mouse cecum forms a variety of methylated and thiolated arsenicals. Chem Res Toxicol 24:475–477

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Power SE, O Toole PW, Stanton C, Ross RP, Fitzgerald GF (2014) Intestinal microbiota, diet and health. Br J Nutr 111:387–402

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Qiao Y, Sun J, Xia S, Tang X, Shi Y et al (2014) Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity. Food Funct 5:1241–1249

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Quin N, Yang F, Prifti E, Chen Y, Sha L et al (2014) Alterations of the human gut microbiome in liver cirrosis. Nature 513:59–64

    Article  CAS  Google Scholar 

  96. 96.

    Reed SH, Neuman S, Moscovich S, Glahn RP, Koren O et al (2015) Chronic zinc deficiency alters chik gut microbiota composition and function. Nutrients 7:9768–9784

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Rettig S, Tenewitz J, Ahearn G, Coughlin C (2014) Sucralose causes a concentration dependent metabolic inhibition of the gut flora Bacteroides, B. fragilis and B. uniformis not observed in the Firmicutes, E. faecalis and C. sordellii. FASEB J 28:1111–1118

    Google Scholar 

  98. 98.

    Riley LW, Raphael E, Faerstein E (2013) Obesity in the United States—dysbiosis from exposure to low-dose antibiotics? Front Public Health 69:1–8

    Google Scholar 

  99. 99.

    Roberts CL, Keita AV, Duncan SH, O Kennedy N, Söderholm JD et al (2010) Translocation of Crohn’s disease Escherichia coli across M-cells: contrasting effects of soluble plant fibres and emulsifiers. Gut 59:1331–1339

    PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Robinson CJ, Young VB (2010) Antibiotic administration alters the community structure of the gastrointestinal microbiota. Gut Microb 1:279–284

    Article  Google Scholar 

  101. 101.

    Robles Alonso V, Guarner F (2013) Linking the gut microbiota to human health. Br J Nutr 109:S21–S26

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Russell SL, Gold MJ, Reynolds LA, Willing BP, Dimitriu P et al (2015) Perinatal antibiotic-induced shifts in gut microbiota have differential effects on inflammatory lung diseases. J Allergy Clin Inmunol 135:100–109

    CAS  Article  Google Scholar 

  103. 103.

    Saad R, Rizkallah MR, Aziz RK (2012) Gut pharmacomicrobiomics: the tip of an iceberg of complex, interactions between drugs and gut-associated microbes. Gut Pathog 4:16–28

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Schippa S, Conte MP (2014) Dysbiotic events in gut microbiota: impacts on human health. Nutrients 6:5786–5805

    PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Shang Q, Yin Y, Zhu L, Li G, Yu G et al (2016) Degradation of chondroitin sulfate by the gut microbiota of Chinese individuals. Int J Biol Macromol 86:112–118

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Shehata AA, Schrödl W, Aldin AA, Hafez HM, Krüger M (2013) The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro. Curr Microbiol 66:350–358

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Singh V, Yeon BS, Vijay-Kumar M (2016) Gut microbiome as a novel cardiovascular therapeutic target. Curr Opin Pharmacol 27:8–12

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Starke IC, Pieper R, Neumann K, Zentek J, Vahjen W (2014) The impact of high dietary zinc oxide on the development of the intestinal microbiota in weaned piglets. FEMS Microbiol Ecol 87:416–427

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Subramanian S, Huq S, Yatsumenko T, Haque R, Mahfuz M et al (2014) Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510:417–421

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiis CA et al (2014) Artificial sweeteners induce glucose intolerance by altering the gut micobiota. Nature 514:181–186

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Swithers SE, Martin AA, Clark KM, Laboy AF, Davidson TL (2010) Body weight gain in rats consuming sweetened liquids. Effects on caffeine and diet composition. Appetite 55:528–533

    CAS  PubMed  Google Scholar 

  112. 112.

    Tan H, O Toole PW (2015) Impact of diet on the human intestinal microbiota. Curr Opin Food Sci 2:71–77

    Article  Google Scholar 

  113. 113.

    Thapa D, Louis P, Losa R, Zweifel B, Wallace RJ (2015) Essential oils have different effects on human pathogenic and commensal bacteria in mixed faecal fermentations compared with pure cultures. Microbiology 161:441–449

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    Thomas RM, Jobin C (2015) The microbiome and cancer: is the “oncobiome” mirage real? Trends Cancer 1:24–35

    PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Thuny F, Richet H, Casalta JP, Angelakis E, Habib G et al (2010) Vancomycin treatment of infective endocarditis is linked with recently acquired obesity. PLoS One 5:e9074

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  116. 116.

    Touvier M, Druesne-Pecollo N, Kesse-Guyot E, Andreeva VA, Fezeu L et al (2013) Dual association between polyphenol intake and breast cancer risk according to alcohol consumption level: a prospective cohort study. Breast Cancer Res Treat 137:225–236

    PubMed  Article  Google Scholar 

  117. 117.

    Trasandre L, Blustein J, Liu M, Corwin E, Cox LM (2013) Infant antibiotic exposures and early-life body mass. Int J Obes 37:16–23

    Article  Google Scholar 

  118. 118.

    Tuohy KM, Conterno L, Gasperotti M, Viola R (2012) Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. J Agric Food Chem 60:8776–8782

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Tzounis X, Roriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C et al (2011) Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double blind, crossover interventional study. Am J Clin Nutr 93:62–72

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Van de Wiele T, Vanhaecke L, Boeckaert C, Peru K, Headley J et al (2005) Human colon microbiota transform polyciclic aromatic hydrocarbons to estrogenic metabolites. Environ Health Perspect 113:6–10

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Van Vleck PR, Lima S, Siler JD, Foditsch C, Wamick LD et al (2016) Ingestion of milk containing very low concentration of antimicrobials: longitudinal effects on fecal microbiota composition in preweaned calves. PloS One 11:e0147525

    Article  CAS  Google Scholar 

  122. 122.

    Vermeiren J, Hindryckx P, van Nieuwenhuyse G, Laukens D, de Vos M et al (2012) Intrarectal nitric oxide administration prevents cellular infiltration but not colonic injury during dextran sodium sulfate colitis. Dig Dis Sci 57:1832–1837

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Vrieze A, Out C, Fuentes S, Jonker L, Reuling I et al (2014) Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol 60:824–831

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS et al (2011) Glut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Wu H, Tremaroli V, Bäckhed F (2015) Linking microbiota to human diseases: a systems biology perspective. Trends Endocrinol Metab 26:758–770

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Yap PSX, Lim SHE, Hu CP, Yiap BC (2013) Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria. Phytomedicine 20:710–713

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Zackular JP, Rogers MAM, Ruffin MT IV, Schloss PD (2014) The human gut mirobiome as a screening tool for colorectal cancer. Cancer Prev Res 7:1112–1121

    CAS  Article  Google Scholar 

  128. 128.

    Zhang L, Huang Y, Zhou Y, Buckley T, Wang HH (2013) Antibiotic administration routes significantly influence the levels of antibiotic resistance in gut microbiota. Antimicrob Agents Chemother 57:3659–3666

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Zhang L, Nichols RG, Correll J, Murray IA, Tanaka N et al (2015) Persistent organic pollutants modify gut microbiota-host metabolic homeostasis in mice through aryl hydrocarbon receptor activation. Environ Health Perspect 123:679–688

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors want to thank the European Regional Development Funds (FEDER), grant GRC 2014/004 for covering the costs.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jose Manuel Miranda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article forms part of a special issue of the Journal of Physiology and Biochemistry entitled “Impact of lifestyles patterns on human health: Integrated approach from the child to the elderly”

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roca-Saavedra, P., Mendez-Vilabrille, V., Miranda, J.M. et al. Food additives, contaminants and other minor components: effects on human gut microbiota—a review. J Physiol Biochem 74, 69–83 (2018). https://doi.org/10.1007/s13105-017-0564-2

Download citation

Keywords

  • Antibiotics
  • Bacteroidetes
  • Dietary emulsifier
  • Firmicutes
  • Food additive
  • Gut microbiota
  • Non-nutritive sweetener
  • Proteobacteria