Skip to main content

Advertisement

Log in

Effects of pterostilbene in brown adipose tissue from obese rats

Journal of Physiology and Biochemistry Aims and scope Submit manuscript

An Erratum to this article was published on 05 October 2017

This article has been updated

Abstract

In recent years, much attention has been paid by the scientific community to phenolic compounds as active biomolecules naturally present in foods. Pterostilbene is a resveratrol dimethylether derivative which shows higher bioavailability. The aim of the present study was to analyze the effect of pterostilbene on brown adipose tissue thermogenic markers in a model of genetic obesity, which shows reduced thermogenesis. The experiment was conducted with 30 Zucker (fa/fa) rats that were distributed in three experimental groups: control and two groups orally administered with pterostilbene at 15 and 30 mg/kg body weight/day for 6 weeks. Gene expression of uncoupling protein 1 (Ucp1), peroxisome proliferator-activated receptor γ co-activator 1 α (Pgc-1α), carnitine palmitoyl transferase 1b (Cpt1b), peroxisome proliferator-activated receptor α (Pparα), nuclear respiratory factor 1 (Nfr1), and cyclooxygenase-2 (Cox-2); protein expression of PPARα, PGC-1α, p38 mitogen-activated protein kinase (p38 MAPK), UCP1 and glucose transporter (GLUT4); and enzyme activity of CPT 1b and citrate synthase (CS) were assessed in interscapular brown adipose tissue. With the exception of Pgc-1α expression, all these parameters were significantly increased by pterostilbene administration. These results show for the first time that pterostilbene increases thermogenic and oxidative capacity of brown adipose tissue in obese rats. Whether these effects effectively contribute to the antiobesity properties of these compound needs further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 05 October 2017

    Volume 73 issue 3 was published with an incorrect cover date. Correct is August 2017. The Publisher apologizes for this mistake and all related inconveniences caused by this.

References

  1. Aguirre L, Hijona E, Macarulla MT, Gracia A, Larrechi I, Bujanda L, Hijona L, Portillo MP (2013) Several statins increase body and liver fat accumulation in a model of metabolic syndrome. J Physiol Pharmacol 64:281–288

    CAS  PubMed  Google Scholar 

  2. Ajmo JM, Liang X, Rogers CQ, Pennock B, You M (2008) Resveratrol alleviates alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol 295:G833–G842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alberdi G, Rodríguez VM, Miranda J, Macarulla MT, Arias N, Andrés-Lacueva C, Portillo MP (2011) Changes in white adipose tissue metabolism induced by resveratrol in rats. Nutr Metab (Lond) 8:29

    Article  CAS  Google Scholar 

  4. Alberdi G, Rodríguez VM, Miranda J, Macarulla MT, Churruca I, Portillo MP (2013) Thermogenesis is involved in the body-fat lowering effects of resveratrol in rats. Food Chem 141:1530–1535

    Article  CAS  PubMed  Google Scholar 

  5. Andrade JM, Paraíso AF, de Oliveira MV, Martins AM, Neto JF, Guimarães AL, de Paula AM, Qureshi M, Santos SH (2014) Resveratrol attenuates hepatic steatosis in high-fat fed mice by decreasing lipogenesis and inflammation. Nutrition 30:915–919

    Article  CAS  PubMed  Google Scholar 

  6. Argilés JM (1989) The obese Zucker rat: a choice for fat metabolism 1968-1988: twenty years of research on the insights of the Zucker mutation. Prog Lipid Res 28:53–66

    Article  PubMed  Google Scholar 

  7. Arias N, Miranda J, Macarulla MT, Aguirre L, Fernández-Quintela A, Andres-Lacueva C, Urpi-Sarda M, Portillo MP (2014) The combination of resveratrol and conjugated linoleic acid attenuates the individual effects of these molecules on triacylglycerol metabolism in adipose tissue. Eur J Nutr 53:575–582

    Article  CAS  PubMed  Google Scholar 

  8. Bai L, Pang WJ, Yang YJ, Yang GS (2008) Modulation of Sirt1 by resveratrol and nicotinamide alters proliferation and differentiation of pig preadipocytes. Mol Cell Biochem 307:129–140

    Article  CAS  PubMed  Google Scholar 

  9. Bieber LL, Abraham T, Helmrath T (1972) A rapid spectrophotometric assay for carnitine palmitoyltransferase. Anal Biochem 50:509–518

    Article  CAS  PubMed  Google Scholar 

  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  11. Cai YJ, Fang JG, Ma LP, Yang L, Liu ZL (2003) Inhibition of free radical-induced peroxidation of rat liver microsomes by resveratrol and its analogues. Biochim Biophys Acta 1637:31–38

    Article  CAS  PubMed  Google Scholar 

  12. Cannon B, Nedergaard J (2012) Yes, even human brown fat is on fire! J Clin Invest 122:486–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26:1001–1043

    Article  CAS  PubMed  Google Scholar 

  14. Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A (2013) Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18:1818–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Etxeberria U, Hijona E, Aguirre L, Milagro FI, Bujanda L, Rimando AM, Martínez JA, Portillo MP (2017) Pterostilbene-induced changes in gut microbiota composition in relation to obesity. Mol Nutr Food Res 61:1–12

    Article  Google Scholar 

  16. Gomez-Zorita S, Fernandez-Quintela A, Lasa A, Aguirre L, Rimando AM, Portillo MP (2014) Pterostilbene, a dimethyl ether derivative of resveratrol, reduces fat accumulation in rats fed an obesogenic diet. J Agric Food Chem 62:8371–8378

    Article  CAS  PubMed  Google Scholar 

  17. Gómez-Zorita S, Fernández-Quintela A, Aguirre L, Macarulla MT, Rimando AM, Portillo MP (2015) Pterostilbene improves glycaemic control in rats fed an obesogenic diet: involvement of skeletal muscle and liver. Food Funct 6:1968–1976

    Article  PubMed  Google Scholar 

  18. Gómez-Zorita S, Fernández-Quintela A, Macarulla MT, Aguirre L, Hijona E, Bujanda L, Milagro F, Martínez JA, Portillo MP (2012) Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress. Br J Nutr 107:202–210

    Article  PubMed  Google Scholar 

  19. Joseph JA, Fisher DR, Cheng V, Rimando AM, Shukitt-Hale B (2008) Cellular and behavioral effects of stilbene resveratrol analogues: implications for reducing the deleterious effects of aging. J Agric Food Chem 56:10544–10551

    Article  CAS  PubMed  Google Scholar 

  20. Kapetanovic IM, Muzzio M, Huang Z, Thompson TN, McCormick DL (2011) Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats. Cancer Chemother Pharmacol 68:593–601

    Article  CAS  PubMed  Google Scholar 

  21. Kava R, Greenwood M, PR J (1990) New rat models of obesity and type II diabetes: Zucker (fa/fa) rat. In, ILAR, p 4–88

  22. Kosuru R, Rai U, Prakash S, Singh A, Singh S (2016) Promising therapeutic potential of pterostilbene and its mechanistic insight based on preclinical evidence. Eur J Pharmacol 789:229–243

    Article  CAS  PubMed  Google Scholar 

  23. Livak K, Schmittgen T Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)). Method 25:402–408

  24. López-Soriano EJ, Carbó N, Argilés JM (1991) Lipid metabolism in the obese Zucker rat. Disposal of an oral [14C]triolein load and lipoprotein lipase activity. Biochem J 274(Pt 3):651–656

    Article  PubMed  PubMed Central  Google Scholar 

  25. Maggio CA, Greenwood MR (1982) Adipose tissue lipoprotein lipase (LPL) and triglyceride uptake in Zucker rats. Physiol Behav 29:1147–1152

    Article  CAS  PubMed  Google Scholar 

  26. Marette A, Tulp O, Buckowiecki L (1990) Defective brown adipose tissue thermogenesis in obesity. Role insulin resistance and diabetes. John Libbey and Company Ltd, London

    Google Scholar 

  27. McCormack D, McFadden D (2013) A review of pterostilbene antioxidant activity and disease modification. Oxidative Med Cell Longev 2013:575482

    Article  Google Scholar 

  28. Nedergaard J, Bengtsson T, Cannon B (2011) New powers of brown fat: fighting the metabolic syndrome. Cell Metab 13:238–240

    Article  CAS  PubMed  Google Scholar 

  29. Nedergaard J, Petrovic N, Lindgren EM, Jacobsson A, Cannon B (2005) PPARgamma in the control of brown adipocyte differentiation. Biochim Biophys Acta 1740:293–304

    Article  CAS  PubMed  Google Scholar 

  30. Otake Y, Nolan AL, Walle UK, Walle T (2000) Quercetin and resveratrol potently reduce estrogen sulfotransferase activity in normal human mammary epithelial cells. J Steroid Biochem Mol Biol 73:265–270

    Article  CAS  PubMed  Google Scholar 

  31. Pan MH, Chiou YS, Chen WJ, Wang JM, Badmaev V, Ho CT (2009) Pterostilbene inhibited tumor invasion via suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Carcinogenesis 30:1234–1242

    Article  CAS  PubMed  Google Scholar 

  32. Paul S, DeCastro AJ, Lee HJ, Smolarek AK, So JY, Simi B, Wang CX, Zhou R, Rimando AM, Suh N (2010) Dietary intake of pterostilbene, a constituent of blueberries, inhibits the beta-catenin/p65 downstream signaling pathway and colon carcinogenesis in rats. Carcinogenesis 31:1272–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rayalam S, Della-Fera MA, Yang JY, Park HJ, Ambati S, Baile CA (2007) Resveratrol potentiates genistein’s antiadipogenic and proapoptotic effects in 3T3-L1 adipocytes. J Nutr 137:2668–2673

    CAS  PubMed  Google Scholar 

  34. Rimando AM, Khan SI, Mizuno CS, Ren G, Mathews ST, Kim H, Yokoyama W (2016) Evaluation of PPARα activation by known blueberry constituents. J Sci Food Agric 96:1666–1671

    Article  CAS  PubMed  Google Scholar 

  35. Rimando AM, Nagmani R, Feller DR, Yokoyama W (2005) Pterostilbene, a new agonist for the peroxisome proliferator-activated receptor alpha-isoform, lowers plasma lipoproteins and cholesterol in hypercholesterolemic hamsters. J Agric Food Chem 53:3403–3407

    Article  CAS  PubMed  Google Scholar 

  36. Rimando AM, Suh N (2008) Biological/chemopreventive activity of stilbenes and their effect on colon cancer. Planta Med 74:1635–1643

    Article  CAS  PubMed  Google Scholar 

  37. Seale P (2015) Transcriptional regulatory circuits controlling brown fat development and activation. Diabetes 64:2369–2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Srere P (1969) Citrate synthase. In, Methods Enzymology, p 3–11

  39. Stern JS, Johnson PR (1977) Spontaneous activity and adipose cellularity in the genetically obese zucker rat (fafa). Metabolism 26:371–380

    Article  CAS  PubMed  Google Scholar 

  40. Szkudelska K, Nogowski L, Szkudelski T (2009) Resveratrol, a naturally occurring diphenolic compound, affects lipogenesis, lipolysis and the antilipolytic action of insulin in isolated rat adipocytes. J Steroid Biochem Mol Biol 113:17–24

    Article  CAS  PubMed  Google Scholar 

  41. Vasselli JR, Cleary MP, Jen KL, Greenwood MR (1980) Development of food motivated behavior in free feeding and food restricted Zucker fatty (fa/fa) rats. Physiol Behav 25:565–573

    Article  CAS  PubMed  Google Scholar 

  42. Walle T, Hsieh F, DeLegge MH, Oatis JE, Walle UK (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32:1377–1382

    Article  CAS  PubMed  Google Scholar 

  43. Wenzel E, Somoza V (2005) Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res 49:472–481

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Yin L, Hillgartner F (2003) SREBP-1 integrates the actions of thyroid hormone, insulin, cAMP, and medium-chain fatty acids on ACCalpha transcription in hepatocytes. J Lipid Res 44:356–368

    Article  CAS  PubMed  Google Scholar 

  45. Zulet MA, Marti A, Parra MD, Martinez JA (2005) Inflammation and conjugated linoleic acid: mechanisms of action and implications for human health. J Physiol Biochem 61:483–494

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Ministerio de Economía y Competitividad (AGL-2015-65719-R), Fondo Europeo de Desarrollo Regional (FEDER), Instituto de Salud Carlos III (CIBERobn), Government of the Basque Country (IT-572-13), and University of the Basque Country (UPV/EHU) (ELDUNANOTEK UFI11/32). The authors would also like to acknowledge the financial support of Biodonostia Institute. I. Milton-Laskibar is a predoctoral fellows from the Government of the Basque Country.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María P. Portillo.

Ethics declarations

The experiment was conducted with thirty 5-week-old male Zucker (fa/fa) rats purchased from Charles Rivers Laboratories (Barcelona, Spain) and was conducted in accordance with the institution’s guide for the care and use of laboratory animals (approval document reference CEBA CEEA14/018).

Additional information

An erratum to this article is available at https://doi.org/10.1007/s13105-017-0593-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguirre, L., Milton-Laskibar, I., Hijona, E. et al. Effects of pterostilbene in brown adipose tissue from obese rats. J Physiol Biochem 73, 457–464 (2016). https://doi.org/10.1007/s13105-017-0556-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-017-0556-2

Keywords

Navigation