Skip to main content

Myo-inositol inhibits intestinal glucose absorption and promotes muscle glucose uptake: a dual approach study


The present study investigated the effects of myo-inositol on muscle glucose uptake and intestinal glucose absorption ex vivo as well as in normal and type 2 diabetes model of rats. In ex vivo study, both intestinal glucose absorption and muscle glucose uptake were studied in isolated rat jejunum and psoas muscle respectively in the presence of increasing concentrations (2.5 % to 20 %) of myo-inositol. In the in vivo study, the effect of a single bolus dose (1 g/kg bw) of oral myo-inositol on intestinal glucose absorption, blood glucose, gastric emptying and digesta transit was investigated in normal and type 2 diabetic rats after 1 h of co-administration with 2 g/kg bw glucose, when phenol red was used as a recovery marker. Myo-inositol inhibited intestinal glucose absorption (IC50 = 28.23 ± 6.01 %) and increased muscle glucose uptake, with (GU50 = 2.68 ± 0.75 %) or without (GU50 = 8.61 ± 0.55 %) insulin. Additionally, oral myo-inositol not only inhibited duodenal glucose absorption and reduced blood glucose increase, but also delayed gastric emptying and accelerated digesta transit in both normal and diabetic animals. Results of this study suggest that dietary myo-inositol inhibits intestinal glucose absorption both in ex vivo and in normal or diabetic rats and also promotes muscle glucose uptake in ex vivo condition. Hence, myo-inositol may be further investigated as a possible anti-hyperglycaemic dietary supplement for diabetic foods and food products.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5



Diabetic control


Diabetic myo-inositol


Glucose absorption index


Gastrointestinal tract


Normal control


Normal myo-inositol


Polycystic ovary syndrome


Phenol red


Type 2 diabetes


  1. Algandaby MM, Alghamdi HA, Ashour OM, et al. (2010) Mechanisms of the antihyperglycemic activity of Retama raetam in streptozotocin-induced diabetic rats. Food Chem Toxicol 48:2448–2453

    Article  CAS  PubMed  Google Scholar 

  2. Aronoff SL, Berkowitz K, Shreiner B, Want L (2004) Glucose metabolism and regulation: beyond insulin and glucagon diabetes. Spectr 17:183–190

    Google Scholar 

  3. Bessesen DH (2001) The role of carbohydrates in insulin resistance. J Nutr 131:2782–2786

    Google Scholar 

  4. Brown RJ, De Banate MA, Rother KI (2010) Artificial sweeteners: a systematic review of metabolic effects in youth. Int J Pediatr Obes 5:305–312

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chung SK, Kwon YU (1999) Practical synthesis of all inositol stereoisomers from myo-inositol. Bioorg Med Chem Lett 9:2135–2140

    Article  CAS  PubMed  Google Scholar 

  6. Clements RS Jr, Darnell B (1980) Myo-inositol content of common foods: development of a high-myo-inositol diet. Am J Clin Nutr 33:1954–1967

    CAS  PubMed  Google Scholar 

  7. Dang NT, Mukai R, Yoshida K, Ashida H (2010) D-pinitol and myo-inositol stimulate translocation of glucose transporter 4 in skeletal muscle of C57BL/6 mice. Biosci Biotechnol Biochem 74:1062–1067

    Article  CAS  PubMed  Google Scholar 

  8. Dedoussis GVS, Kaliora AC, Panagiotakos DB (2007) Genes, Diet and Type 2 Diabetes Mellitus: A Review. Rev Diab Stud 4:13–24

    Article  Google Scholar 

  9. Facchinetti F, Bizzarri M, Benvenga S, et al. (2015) Results from the international consensus conference on myo-inositol and D-chiro-inositol in obstetrics and gynecology: the link between metabolic syndrome and PCOS. Eur J Obstet Gynecol Reprod Biol 195:72–76

    Article  CAS  PubMed  Google Scholar 

  10. French AB, Brown IF, Good CJ, McLeod GM (1968) Comparison of phenol red and polyethyleneglycol as non-absorbable markers for the study of intestinal absorption in humans. Am J Dig Dis 13:558–564

    Article  CAS  PubMed  Google Scholar 

  11. Giordano D, Corrado F, Santamaria A, et al. (2011) Effects of myo-inositol supplementation in postmenopausal women with metabolic syndrome: a perspective, randomized, placebo-controlled study. Menopause 18:102–104

    Article  PubMed  Google Scholar 

  12. Hassan Z, Yam MF, Ahmad M, Yusof AP (2010) Anti-diabetic properties and mechanism of action of Gynuraprocumbens water extract in streptozotocin – induced diabetic rats. Molecules 15:9008–9025

    Article  CAS  PubMed  Google Scholar 

  13. Heimark D, McAllister J, Larner J (2014) Decreased myo-inositol to chiro-inositol (M/ C) ratios and increased M/C epimerase activity in PCOS theca cells demonstrate increased insulin sensitivity compared to controls. Endocr J 61:111–117

    Article  CAS  PubMed  Google Scholar 

  14. Horowitz M, Wishart JM, Jones KL, Hebbard GS (1996) Gastric emptying in diabetes: an overview. Diabet Med 13:S16–S22

    CAS  PubMed  Google Scholar 

  15. Hu FB (2003) Sedentary lifestyle and risk of obesity and type 2 diabetes. Lipids 38:103–108

    Article  CAS  PubMed  Google Scholar 

  16. International Diabetes Federation (2015) IDF Diabetes Atlas. 7th edition

  17. Islam MS, Sakaguchi E (2006) Sorbitol-based osmotic diarrhea: possible causes and mechanism of prevention investigated in rats. World J Gastroenterol 12:7635–7641

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kunjara S, Wang DY, Greenbaum AL, McLean P, Kurtz A, Rademacher TW (1999) Inositol phosphoglycans in diabetes and obesity: urinary levels of IPG A-type and IPG P-type, and relationship to pathophysiological changes. Mol Genet Metab 68:488–502

  19. Livesey G (2003) Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutr Res Rev 16:163–191

    Article  CAS  PubMed  Google Scholar 

  20. Loghmani E (2005) Diabetes mellitus: type 1 and type 2. In: Stang J (ed) Guide lines for adolescent nutrition service. University of Minnesota, Minneapolis, pp. 167–182

    Google Scholar 

  21. Maeba R, Hara H, Ishikawa H, et al. (2008) Myoinositol treatment increases serum plasmalogens and decreases small dense LDL, particularly in hyperlipidemic subjects with metabolic syndrome. J Nutr Sci Vitaminol (Tokyo) 54:196–202

    Article  CAS  Google Scholar 

  22. McLaurin J, Golomb R, Jurewicz A, Antel JP, Fraser PE (2000) Inositol stereoisomers stabilize on oligomeric aggregate of Alzheimer amyloid beta peptide and inhibit Abeta-induced toxicity. J Biol Chem 275:18495–18502

    Article  CAS  PubMed  Google Scholar 

  23. McLean P, Kunjara S, Greenbaum AL, et al. (2008) Reciprocal control of pyruvate dehydrogenase kinase and phosphatase by inositol phosphoglycans. Dynamic state set by "push-pull" system. J Biol Chem 283:33428–33436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Minozzi M, Nordio M, Pajalich R (2013) The combined therapy myo-inositol plus D-chiro-inositol, in a physiological ratio, reduces the cardiovascular risk by improving the lipid profile in PCOS patients. Eur Rev Med Pharmacol Sci 17:537–540

    CAS  PubMed  Google Scholar 

  25. Montonen J, Järvinen R, Knekt P, Heliövaara M, Reunanen A (2007) Consumption of sweetened beverages and intakes of fructose and glucose predict type 2 diabetes occurrence. J Nutr 137:1447–1454

    CAS  PubMed  Google Scholar 

  26. Nordio M, Proietti E (2012) The combined therapy with myo-inositol and D-chiro-inositol reduces the risk of metabolic disease in PCOS overweight patients compared to myo-inositol supplementation alone. Eur Rev Med Pharmacol Sci 16:575–581

    CAS  PubMed  Google Scholar 

  27. Onomi S, Katayama T (1997) Effects of dietary myo-inositol and phytic acid on hepatic lipids accumulation in rats fed on sucrose or orotic acid. J Jpn Soc Nutr Food Sci 50:267–272

    Article  CAS  Google Scholar 

  28. Partley RE (2013) The early treatment of type 2 diabetes. Am J Med 126:S2–S9

    Article  Google Scholar 

  29. Phillips WT, Schwartz JG, McMahan CA (1991) Rapid gastric emptying in patients with early non-insulin-dependent diabetes mellitus. N Engl J Med 324:130–131

    Article  CAS  PubMed  Google Scholar 

  30. Ranganath L, Norris F, Morgan L, Wright J, Marks V (1998) Delayed gastric emptying occurs following acarbose administration and is a further mechanism for its anti-hyperglycaemic effect. Diabet Med 15:120–124

    Article  CAS  PubMed  Google Scholar 

  31. Rider AK, Schedl HP, Nokes G, Shining S (1967) Small intestinal glucose transport. Proximal-distal kinetic gradients. J Gen Physiol 50:1173–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Riesenfeld G, Sklan D, Bar A, Eisner U, Hurwitz S (1980) Glucose absorption and starch digestion in the intestine of the chicken. J Nutr 110:117–121

    CAS  PubMed  Google Scholar 

  33. Salminen E, Salminen S, Porkka L, Koivistoinen P (1984) The effects of xylitol on gastric emptying and secretion of gastric inhibitory polypeptide in the rat. J Nutr 114:2201–2203

    CAS  PubMed  Google Scholar 

  34. Saltiel AR (1990) Second messengers of insulin action. Diabetes Care 13:244–256

    Article  CAS  PubMed  Google Scholar 

  35. Shafer RB, Levine AS, Marlette JM, Morley JE (1987) Effects of xylitol on gastric emptying and food intake. Am J Clin Nutr 45:744–747

    CAS  PubMed  Google Scholar 

  36. Stanhope KL, Bremer AA, Medici V, et al. (2011) Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women. J Clin Endocrinol Metab 96:E1596–E1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Unfer V, Carlomagno G, Papaleo E, Vailati S, Candiani M, Baillargeon JP (2014) Hyperinsulinemia alters myoinositol to d-chiroinositol ratio in the follicular fluid of patients with PCOS. Reprod Sci 21:854–858

    Article  CAS  PubMed  Google Scholar 

  38. Uusitupa M (2002) Lifestyles matter in the prevention of type 2 diabetes. Diabetes Care 25:1650–1651

    Article  PubMed  Google Scholar 

  39. Wilson RD, Islam MS (2012) Fructose-fed streptozotocin-injected rat: an alternative model for type 2 diabetes. Pharmacol Rep 64:129–139

    Article  CAS  PubMed  Google Scholar 

  40. Yap A, Nishiumi S, Yoshida K, Ashida H (2007) Rat L6 myotubes as an in vitro model system to study GLUT4-dependent glucose uptake stimulated by inositol derivatives. Cytotechnol 55:103–108

    Article  CAS  Google Scholar 

Download references


This study was supported by the competitive research grant from the Research Office, University of KwaZulu-Natal (UKZN), Durban; an incentive grant for rated researchers and a grant support for women and young researchers from the National Research Foundation (NRF), Pretoria, South Africa. Special thanks to Dr. M. Singh for giving us access to her lab and Dr. Linda Bester, David Mompe and Deliwe Mdakane for their assistance during this study.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Md. Shahidul Islam.

Ethics declarations


The authors declare that there is no conflict of interest within this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chukwuma, C.I., Ibrahim, M.A. & Islam, M.S. Myo-inositol inhibits intestinal glucose absorption and promotes muscle glucose uptake: a dual approach study. J Physiol Biochem 72, 791–801 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Myo-inositol
  • Type 2 diabetes
  • Intestinal glucose absorption
  • Muscle glucose uptake
  • Rats