Skip to main content
Log in

Independent AMP and NAD signaling regulates C2C12 differentiation and metabolic adaptation

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The balance of ATP production and consumption is reflected in adenosine monophosphate (AMP) and nicotinamide adenine dinucleotide (NAD) content and has been associated with phenotypic plasticity in striated muscle. Some studies have suggested that AMPK-dependent plasticity may be an indirect consequence of increased NAD synthesis and SIRT1 activity. The primary goal of this study was to assess the interaction of AMP- and NAD-dependent signaling in adaptation of C2C12 myotubes. Changes in myotube developmental and metabolic gene expression were compared following incubation with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and nicotinamide mononucleotide (NMN) to activate AMPK- and NAD-related signaling. AICAR showed no effect on NAD pool or nampt expression but significantly reduced histone H3 acetylation and GLUT1, cytochrome C oxidase subunit 2 (COX2), and MYH3 expression. In contrast, NMN supplementation for 24 h increased NAD pool by 45 % but did not reduce histone H3 acetylation nor promote mitochondrial gene expression. The combination of AMP and NAD signaling did not induce further metabolic adaptation, but NMN ameliorated AICAR-induced myotube reduction. We interpret these results as indication that AMP and NAD contribute to C2C12 differentiation and metabolic adaptation independently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brandauer J, Vienberg SG, Andersen MA, Ringholm S, Risis S, Larsen PS, Kristensen JM, Frosig C, Leick L, Fentz J, Jorgensen S, Kiens B, Wojtaszewski JF, Richter EA, Zierath JR, Goodyear LJ, Pilegaard H, Treebak JT (2013) AMP-activated protein kinase regulates nicotinamide phosphoribosyl transferase expression in skeletal muscle. J Physiol 591:5207–5220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Canto C, Auwerx J (2009) PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20:98–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Canto C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, Zierath JR, Auwerx J (2010) Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 11:213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Canto C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, Fernandez-Marcos PJ, Yamamoto H, Andreux PA, Cettour-Rose P, Gademann K, Rinsch C, Schoonjans K, Sauve AA, Auwerx J (2012) The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab 15:838–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Canto C, Menzies KJ, Auwerx J (2015) NAD Metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab

  7. Cheetham ME, Boobis LH, Brooks S, Williams C (1985) Human muscle metabolism during sprint running. J Appl Physiol 61(1986):54–60

    Google Scholar 

  8. Costford SR, Bajpeyi S, Pasarica M, Albarado DC, Thomas SC, Xie H, Church TS, Jubrias SA, Conley KE, Smith SR (2010) Skeletal muscle NAMPT is induced by exercise in humans. Am J Physiol Endocrinol Metab 298:E117–126

    Article  CAS  PubMed  Google Scholar 

  9. Frederick DW, Davis JG, Davila A Jr, Agarwal B, Michan S, Puchowicz MA, Nakamaru-Ogiso E, Baur JA (2015) Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism. J Biol Chem 290:1546–1558

    Article  CAS  PubMed  Google Scholar 

  10. Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, Sartorelli V (2008) Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 14:661–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, Alt FW, Wu Z, Puigserver P (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO Journal 26:1913–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hsu CG, Burkholder TJ (2015) Activation of p38 in C2C12 myotubes following ATP depletion depends on extracellular glucose. J Physiol Biochem 71:253–265

    Article  CAS  PubMed  Google Scholar 

  13. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18:283–293

    Article  CAS  PubMed  Google Scholar 

  14. Lau AW, Liu P, Inuzuka H, Gao D (2014) SIRT1 phosphorylation by AMP-activated protein kinase regulates p53 acetylation. Am J Cancer Res 4:245–255

    PubMed  PubMed Central  Google Scholar 

  15. Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116:551–563

    Article  CAS  PubMed  Google Scholar 

  16. Nakashima K, Yakabe Y (2007) AMPK activation stimulates myofibrillar protein degradation and expression of atrophy-related ubiquitin ligases by increasing FOXO transcription factors in C2C12 myotubes. Biosci Biotechnol Biochem 71:1650–1656

    Article  CAS  PubMed  Google Scholar 

  17. Pesce MA, Bodourian SH, Nicholson JF (1975) Rapid kinetic measurement of lactate in plasma with a centrifugal analyzer. Clin Chem 21:1932–1934

    CAS  PubMed  Google Scholar 

  18. R.-C. Team (2015) R: a language and environment for statistical computing., R Foundation for Statistical Computing, Vienna

  19. Romanello V, Guadagnin E, Gomes L, Roder I, Sandri C, Petersen Y, Milan G, Masiero E, Del Piccolo P, Foretz M, Scorrano L, Rudolf R, Sandri M (2010) Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J 29:1774–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ryall JG, Dell’Orso S, Derfoul A, Juan A, Zare H, Feng X, Clermont D, Koulnis M, Gutierrez-Cruz G, Fulco M, Sartorelli V (2015) The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 16:171–183

  21. Sahlin K (1985) NADH in human skeletal muscle during short-term intense exercise. Pflugers Arch 403:193–196

    Article  CAS  PubMed  Google Scholar 

  22. Sahlin K, Tonkonogi M, Soderlund K (1998) Energy supply and muscle fatigue in humans. Acta Physiol Scand 162:261–266

    Article  CAS  PubMed  Google Scholar 

  23. Salminen A, Kauppinen A, Kaarniranta K (2016) AMPK/Snf1 signaling regulates histone acetylation: impact on gene expression and epigenetic functions, Cellular Signalling

    Google Scholar 

  24. Shimokawa T, Kato M, Ezaki O, Hashimoto S (1998) Transcriptional regulation of muscle-specific genes during myoblast differentiation. Biochem Biophys Res Commun 246:287–292

    Article  CAS  PubMed  Google Scholar 

  25. Sun F, Dai C, Xie J, Hu X (2012) Biochemical issues in estimation of cytosolic free NAD/NADH ratio. PLoS One 7:e34525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wagner TC, Scott MD (1994) Single extraction method for the spectrophotometric quantification of oxidized and reduced pyridine nucleotides in erythrocytes. Anal Biochem 222:417–426

    Article  CAS  PubMed  Google Scholar 

  27. Yoshino J, Mills KF, Yoon MJ, Imai S (2011) Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab 14:528–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, Shulman GI (2002) AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A 99:15983–15987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Burkholder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, C.G., Burkholder, T.J. Independent AMP and NAD signaling regulates C2C12 differentiation and metabolic adaptation. J Physiol Biochem 72, 689–697 (2016). https://doi.org/10.1007/s13105-016-0507-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-016-0507-3

Keywords

Navigation