Fine particulate matter potentiates type 2 diabetes development in high-fat diet-treated mice: stress response and extracellular to intracellular HSP70 ratio analysis


Exposure to fine particulate matter (PM2.5) air pollution is a risk factor for type 2 diabetes (T2DM). We argue whether the potentiating effect of PM2.5 over the development of T2DM in high-fat diet (HFD)-fed mice would be related to modification in cell stress response, particularly in antioxidant defenses and 70-kDa heat shock proteins (HSP70) status. Male mice were fed standard chow or HFD for 12 weeks and then randomly exposed to daily nasotropic instillation of PM2.5 for additional 12 weeks under the same diet schedule, divided into four groups (n = 14–15 each): Control, PM2.5, HFD, and HFD + PM2.5 were evaluated biometric and metabolic profiles of mice, and cellular stress response (antioxidant defense and HSP70 status) of metabolic tissues. Extracellular to intracellular HSP70 ratio ([eHSP72]/[iHSP70]), viz. H-index, was then calculated. HFD + PM2.5 mice presented a positive correlation between adiposity, increased body weight and glucose intolerance, and increased glucose and triacylglycerol plasma levels. Pancreas exhibited lower iHSP70 expression, accompanied by 3.7-fold increase in the plasma to pancreas [eHSP72]/[iHSP70] ratio. Exposure to PM2.5 markedly potentiated metabolic dysfunction in HFD-treated mice and promoted relevant alteration in cell stress response assessed by [eHSP72]/[iHSP70], a relevant biomarker of chronic low-grade inflammatory state and T2DM risk.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7





α2-Macroglobulin receptor


Diabetes mellitus


Epididymal white adipose tissue


Glucose tolerance test


High-fat diet


The 70-kDa family of heat shock proteins


Extracellular 70-kDa heat shock proteins


Intracellular 70-kDa heat shock proteins


Incremental area under the curve


Nuclear factor-kappa B


Nutrient metabolism-related tissues


Particulate matter

PM2.5 :

Fine particulate matter


Phenylmethanesulfonyl fluoride


Sodium dodecyl sulfate


Superoxide dismutase


Type 2 diabetes


Tosyl-l-lysine chloromethyl ketone hydrochloride


Toll-like receptor 2


Toll-like receptor 4


  1. 1.

    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Bock PM, Krause M, Schroeder HT, Hahn GF, Takahashi HK, Scholer CM, Nicoletti G, Neto LD, Rodrigues MI, Bruxel MA et al (2016) Oral supplementations with L-glutamine or L-alanyl-L-glutamine do not change metabolic alterations induced by long-term high-fat diet in the B6.129F2/J mouse model of insulin resistance. Mol Cell Biochem 411:351–362

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Chen JC, Schwartz J (2008) Metabolic syndrome and inflammatory responses to long-term particulate air pollutants. Environ Health Perspect 116:612–617

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Defronzo RA (2009) Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58:773–795

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Di Naso FC, Porto RR, Fillmann HS, Maggioni L, Padoin AV, Ramos RJ, Mottin CC, Bittencourt A, Marroni NA, de Bittencourt HPI Jr (2015) Obesity depresses the anti-inflammatory HSP70 pathway, contributing to NAFLD progression. Obesity 23:120–129

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Emmerechts J, Hoylaerts MF (2012) The effect of air pollution on haemostasis. Hamostaseologie 32:5–13

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    EPA(2010). In.

  9. 9.

    Fajersztajn L, Veras M, Barrozo LV, Saldiva P (2013) Air pollution: a potentially modifiable risk factor for lung cancer. Nat Rev Cancer 13:674–678

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Heck TG, Scholer CM, de Bittencourt HPI Jr (2011) HSP70 expression: does it a novel fatigue signalling factor from immune system to the brain? Cell Biochem Funct 29:215–226

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Hoffmann B, Moebus S, Dragano N, Stang A, Mohlenkamp S, Schmermund A, Memmesheimer M, Brocker-Preuss M, Mann K, Erbel R et al (2009) Chronic residential exposure to particulate matter air pollution and systemic inflammatory markers. Environ Health Perspect 117:1302–1308

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Hooper PL, Balogh G, Rivas E, Kavanagh K, Vigh L (2014) The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes. Cell Stress Chaperones 19:447–464

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kang R, Lotze MT, Zeh HJ, Billiar TR, Tang D (2014) Cell death and DAMPs in acute pancreatitis. Mol Med 20:466–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Keane KN, Cruzat VF, Carlessi R, de Bittencourt PI H Jr, Newsholme P (2015) Molecular Events Linking Oxidative Stress and Inflammation to Insulin Resistance and beta-Cell Dysfunction. Oxidative Med Cell Longev 2015:181643

    Article  Google Scholar 

  15. 15.

    Kolberg A, Rosa TG, Puhl MT, Scola G, da Rocha JD, Maslinkiewicz A, Lagranha DJ, Heck TG, Curi R, de Bittencourt HPI Jr (2006) Low expression of MRP1/GS-X pump ATPase in lymphocytes of Walker 256 tumour-bearing rats is associated with cyclopentenone prostaglandin accumulation and cancer immunodeficiency. Cell Biochem Funct 24:23–39

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Krause M, Bock PM, Takahashi HK, de Bittencourt HPI Jr, Newsholme P (2015) The regulatory roles of NADPH oxidase, intra- and extra-cellular HSP70 in pancreatic islet function, dysfunction and diabetes. Clin Sci 128:789–803

    Article  PubMed  Google Scholar 

  17. 17.

    Krause M, de Bittencourt HPI Jr (2008) Type 1 diabetes: can exercise impair the autoimmune event? The L-arginine/glutamine coupling hypothesis. Cell Biochem Funct 26:406–433

    CAS  Article  Google Scholar 

  18. 18.

    Krause M, Heck TG, Bittencourt A, Scomazzon SP, Newsholme P, Curi R, de Bittencourt HPI Jr (2015) The chaperone balance hypothesis: the importance of the extracellular to intracellular HSP70 ratio to inflammation-driven type 2 diabetes, the effect of exercise, and the implications for clinical management. Mediat Inflamm 2015:249205

    Article  CAS  Google Scholar 

  19. 19.

    Lee MO (1929) The Function of the Air Sacs in Holopneustic Insects. Science 69:334–335

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Liu C, Ying Z, Harkema J, Sun Q, Rajagopalan S (2013) Epidemiological and experimental links between air pollution and type 2 diabetes. Toxicol Pathol 41:361–373

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Ludwig MS, Minguetti-Camara VC, Heck TG, Scomazzon SP, Nunes PR, Bazotte RB, de Bittencourt HPI Jr (2014) Short-term but not long-term hypoglycaemia enhances plasma levels and hepatic expression of HSP72 in insulin-treated rats: an effect associated with increased IL-6 levels but not with IL-10 or TNF-alpha. Mol Cell Biochem 397:97–107

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Maatz LF, Wood GJ, Rivero DH & Saldiva PH et al (2009) Tracheal instillation of urban PM(2.5) suspension promotes acute cardiac polarization changes in rats. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica 42:207–213

  23. 23.

    Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European journal of biochemistry/FEBS 47:469–474

    CAS  Article  Google Scholar 

  24. 24.

    Medeiros N Jr, Rivero DH, Kasahara DI, Saiki M, Godleski JJ, Koutrakis P, Capelozzi VL, Saldiva PH, Antonangelo L (2004) Acute pulmonary and hematological effects of two types of particle surrogates are influenced by their elemental composition. Environ Res 95:62–70

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Mendez R, Zheng Z, Fan Z, Rajagopalan S, Sun Q, Zhang K (2013) Exposure to fine airborne particulate matter induces macrophage infiltration, unfolded protein response, and lipid deposition in white adipose tissue. Am J Transl Res 5:224–234

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Miller MR, Shaw CA, Langrish JP (2012) From particles to patients: oxidative stress and the cardiovascular effects of air pollution. Futur Cardiol 8:577–602

    CAS  Article  Google Scholar 

  27. 27.

    Newsholme P, de Bittencourt HPI Jr (2014) The fat cell senescence hypothesis: a mechanism responsible for abrogating the resolution of inflammation in chronic disease. Current opinion in clinical nutrition and metabolic care 17:295–305

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Pearson JF, Bachireddy C, Shyamprasad S, Goldfine AB & Brownstein JS (2010) Association between fine particulate matter and diabetes prevalence in the U.S..Diabetes care 33:2196–2201

  29. 29.

    Probst-Hensch NM (2010) Chronic age-related diseases share risk factors: do they share pathophysiological mechanisms and why does that matter? Swiss Med Wkly 140:w13072

    CAS  PubMed  Google Scholar 

  30. 30.

    Rajagopalan S, Brook RD (2012) Air pollution and type 2 diabetes: mechanistic insights. Diabetes 61:3037–3045

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Rodrigues-Krause J, Krause M, O'Hagan C, De Vito G, Boreham C, Murphy C, Newsholme P, Colleran G (2012) Divergence of intracellular and extracellular HSP72 in type 2 diabetes: does fat matter? Cell Stress Chaperones 17:293–302

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Schuster DP (2010) Obesity and the development of type 2 diabetes: the effects of fatty tissue inflammation. Diabetes, metabolic syndrome and obesity : targets and therapy 3:253–262

    CAS  Article  Google Scholar 

  33. 33.

    Sone H, Kagawa Y (2005) Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Diabetologia 48:58–67

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Sun Q, Yue P, Deiuliis JA, Lumeng CN, Kampfrath T, Mikolaj MB, Cai Y, Ostrowski MC, Lu B, Parthasarathy S et al (2009) Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation 119:538–546

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Van Eeden SF, Tan WC, Suwa T, Mukae H, Terashima T, Fujii T, Qui D, Vincent R, Hogg JC (2001) Cytokines involved in the systemic inflammatory response induced by exposure to particulate matter air pollutants (PM(10)). Am J Respir Crit Care Med 164:826–830

    Article  PubMed  Google Scholar 

  36. 36.

    Walsh RC, Koukoulas I, Garnham A, Moseley PL, Hargreaves M, Febbraio MA (2001) Exercise increases serum Hsp72 in humans. Cell Stress Chaperones 6:386–393

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    WHO (1998) Carbohydrates in human nutrition. Report of a Joint FAO/WHO Expert Consultation FAO food and nutrition paper 66:1–140

    Google Scholar 

  38. 38.

    Winzell MS, Ahren B (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53(Suppl 3):S215–S219

    Article  PubMed  Google Scholar 

  39. 39.

    Xu X, Yavar Z, Verdin M, Ying Z, Mihai G, Kampfrath T, Wang A, Zhong M, Lippmann M, Chen LC et al (2010) Effect of early particulate air pollution exposure on obesity in mice: role of p47phox. Arterioscler Thromb Vasc Biol 30:2518–2527

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Yan YH, Chou CC, Lee CT, Liu JY, Cheng TJ (2011) Enhanced insulin resistance in diet-induced obese rats exposed to fine particles by instillation. Inhal Toxicol 23:507–519

    CAS  Article  PubMed  Google Scholar 

Download references


The authors would like to thank to E.G.P. Basso, E.T.C. Martins, M.M. Sulzbacher, R.D.B. Basso (all from UNIJUI), P.H.N. Saldiva (USP), and colleagues from the Laboratory of Oxidative Stress and Atmospheric Pollution (UFCSPA) for their technical support.

Author contribution

PBGF completed all the experiments described in this manuscript. PBGF, BS, and FGB performed biometric and metabolic profile. PBGF and ABS performed experiments on oxidative stress parameters. PBGF, BS, and FGB performed Western blot analyses. All authors were involved in analyzing the results. PBGF, TGH, and MSL co-wrote the paper. TGH and CRR designed the study. PIHBJ, TGH, MSL, and CRR provided experimental advice and helped with manuscript revision. All the authors had final approval of the submitted and published versions.

Author information



Corresponding author

Correspondence to Thiago Gomes Heck.

Ethics declarations

Competing interest

The authors declare that they do not have competing financial interests.

Financial support

This work was supported by Federal University of Health Sciences of Porto Alegre (UFCSPA) and by grants from Research Support Foundation of the State of Rio Grande do Sul (PqG-2013 - FAPERGS, process: 002106-2551/13-5 to TGH). PBGF and FGB were recipients of scholarships from the Coordination for the Improvement of Higher Education Personnel (CAPES) and ABS from Research Support Foundation of the State of Rio Grande do Sul (FAPERGS).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goettems-Fiorin, P.B., Grochanke, B.S., Baldissera, F.G. et al. Fine particulate matter potentiates type 2 diabetes development in high-fat diet-treated mice: stress response and extracellular to intracellular HSP70 ratio analysis. J Physiol Biochem 72, 643–656 (2016).

Download citation


  • Adiposity
  • Particulate matter
  • Glycemic control
  • Heat shock protein
  • HSP70
  • Blood glucose