Skip to main content
Log in

Critical role of regulator of calcineurin 1 in spinal cord injury

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is a severe clinical problem worldwide. The pathogenesis of SCI is complicated and much is unknown. The current study was designed to investigate the possible role of regulator of calcineurin 1 (RCAN1) in SCI and to explore the possible molecular mechanisms. Rats were injected with LVshRNAi-RCAN1 and then contusion-induced SCI was established. We found that RCAN1 was significantly increased in spinal cord of rats with SCI. Knockdown of RCAN1 markedly facilitated the structural and functional recovery in the spinal cord, as illustrated by decrease of lesion volume and increase of Basso, Beattie, and Bresnahan (BBB) and combined behavioral score (CBS) scores. Downregulation of RCAN1 suppressed the increase of pro-inflammatory cytokines, including IL-1β and TNF-α, and inhibited the increase of TUNEL-positive cell numbers and caspases 3 and 9 activities. The decrease of oxygen consumption rate and increase of expression of glucose-regulated protein 78 (GRP78) and phosphorylation of protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK) in rats with SCI were inhibited by LVshRNAi-RCAN1. Moreover, knockdown of RCAN1 ameliorated oxidative stress in rats with SCI, as evidenced by decrease of TBA reactive substances (TBARS) and GSSG content and increase of glutathione (GSH) level. These results suggested that RCAN1 played an important role in SCI through regulation of various pathological processes. Overall, the data provide novel insights into the role of RCAN1 in SCI and novel therapeutic targets of the treatment of injury in the spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allison DJ, Ditor DS (2015) Targeting inflammation to influence mood following spinal cord injury: a randomized clinical trial. J Neuroinflammation 12:204

    Article  PubMed  PubMed Central  Google Scholar 

  2. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21

    Article  CAS  PubMed  Google Scholar 

  3. Belmont PJ, Tadimalla A, Chen WJ, Martindale JJ, Thuerauf DJ, Marcinko M, Gude N, Sussman MA, Glembotski CC (2008) Coordination of growth and endoplasmic reticulum stress signaling by regulator of calcineurin 1 (RCAN1), a novel ATF6-inducible gene. J Biol Chem 283:14012–14021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  5. Byrnes KR, Stoica BA, Fricke S, Di Giovanni S, Faden AI (2007) Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain 130:2977–2992

    Article  PubMed  Google Scholar 

  6. Center NSCIS (2013) Spinal cord injury facts and figures at a glance. J Spinal Cord Med 36:394–395

    Article  Google Scholar 

  7. Chang KT, Shi YJ, Min KT (2003) The Drosophila homolog of Down’s syndrome critical region 1 gene regulates learning: implications for mental retardation. Proc Natl Acad Sci U S A 100:15794–15799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cho KO, Kim YS, Cho YJ, Kim SY (2008) Upregulation of DSCR1 (RCAN1 or Adapt78) in the peri-infarct cortex after experimental stroke. Exp Neurol 212:85–92

    Article  CAS  PubMed  Google Scholar 

  9. DePaul MA, Palmer M, Lang BT, Cutrone R, Tran AP, Madalena KM, Bogaerts A, Hamilton JA, Deans RJ, Mays RW, Busch SA, Silver J (2015) Intravenous multipotent adult progenitor cell treatment decreases inflammation leading to functional recovery following spinal cord injury. Sci Rep 5:16795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI (2003) Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol 53:454–468

    Article  CAS  PubMed  Google Scholar 

  11. Ermak G, Hench KJ, Chang KT, Sachdev S, Davies KJ (2009) Regulator of calcineurin (RCAN1-1L) is deficient in Huntington disease and protective against mutant huntingtin toxicity in vitro. J Biol Chem 284:11845–11853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ermak G, Sojitra S, Yin F, Cadenas E, Cuervo AM, Davies KJ (2012) Chronic expression of RCAN1-1L protein induces mitochondrial autophagy and metabolic shift from oxidative phosphorylation to glycolysis in neuronal cells. J Biol Chem 287:14088–14098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD, Pasquale-Styles M, Dietrich WD, Weaver LC (2006) The cellular inflammatory response in human spinal cords after injury. Brain 129:3249–3269

    Article  PubMed  Google Scholar 

  14. Fuentes JJ, Pritchard MA, Planas AM, Bosch A, Ferrer I, Estivill X (1995) A new human gene from the Down syndrome critical region encodes a proline-rich protein highly expressed in fetal brain and heart. Hum Mol Genet 4:1935–1944

    Article  CAS  PubMed  Google Scholar 

  15. Gruner JA (1992) A monitored contusion model of spinal cord injury in the rat. J Neurotrauma 9:123–126, 126-128

    Article  CAS  PubMed  Google Scholar 

  16. Harris CD, Ermak G, Davies KJ (2007) RCAN1-1L is overexpressed in neurons of Alzheimer’s disease patients. FEBS J 274:1715–1724

    Article  CAS  PubMed  Google Scholar 

  17. Hart JE, Morse L, Tun CG, Brown R, Garshick E (2015) Cross-sectional associations of pulmonary function with systemic inflammation and oxidative stress in individuals with chronic spinal cord injury. J Spinal Cord Med 39(3):344–52

  18. Huang SQ, Tang CL, Sun SQ, Yang C, Xu J, Wang KJ, Lu WT, Huang J, Zhuo F, Qiu GP, Wu XY, Qi W (2014) Demyelination initiated by oligodendrocyte apoptosis through enhancing endoplasmic reticulum-mitochondria interactions and Id2 expression after compressed spinal cord injury in rats. CNS Neurosci Ther 20:20–31

    Article  CAS  PubMed  Google Scholar 

  19. Jiang ZS, Pu ZC, Hao ZH (2015) Carvacrol protects against spinal cord injury in rats via suppressing oxidative stress and the endothelial nitric oxide synthase pathway. Mol Med Rep 12:5349–5354

    CAS  PubMed  Google Scholar 

  20. Jin M, Yang YW, Cheng WP, Lu JK, Hou SY, Dong XH, Liu SY (2015) Serine-threonine protein kinase activation may be an effective target for reducing neuronal apoptosis after spinal cord injury. Neural Regen Res 10:1830–1835

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lee KD, Chow WN, Sato-Bigbee C, Graf MR, Graham RS, Colello RJ, Young HF, Mathern BE (2009) FTY720 reduces inflammation and promotes functional recovery after spinal cord injury. J Neurotrauma 26:2335–2344

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li G, Yan W, Dang Y, Li J, Liu C, Wang J (2015) The role of calcineurin signaling in microcystin-LR triggered neuronal toxicity. Sci Rep 5:11271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin HY, Michtalik HJ, Zhang S, Andersen TT, Van Riper DA, Davies KK, Ermak G, Petti LM, Nachod S, Narayan AV, Bhatt N, Crawford DR (2003) Oxidative and calcium stress regulate DSCR1 (Adapt78/MCIP1) protein. Free Radic Biol Med 35:528–539

    Article  CAS  PubMed  Google Scholar 

  24. Liu J, Du L (2015) PERK pathway is involved in oxygen-glucose-serum deprivation-induced NF-kB activation via ROS generation in spinal cord astrocytes. Biochem Biophys Res Commun 467:197–203

    Article  CAS  PubMed  Google Scholar 

  25. Long Z, Zhang X, Sun Q, Liu Y, Liao N, Wu H, Wang X, Hai C (2015) Evolution of metabolic disorder in rats fed high sucrose or high fat diet: focus on redox state and mitochondrial function. Gen Comp Endocrinol. doi:10.1016/j.ygcen.2015.10.012

  26. Luo Y, Fu C, Wang Z, Zhang Z, Wang H, Liu Y (2015) Mangiferin attenuates contusive spinal cord injury in rats through the regulation of oxidative stress, inflammation and the Bcl2 and Bax pathway. Mol Med Rep 12:7132–7138

    CAS  PubMed  Google Scholar 

  27. Martin KR, Corlett A, Dubach D, Mustafa T, Coleman HA, Parkington HC, Merson TD, Bourne JA, Porta S, Arbones ML, Finkelstein DI, Pritchard MA (2012) Over-expression of RCAN1 causes Down syndrome-like hippocampal deficits that alter learning and memory. Hum Mol Genet 21:3025–3041

    Article  CAS  PubMed  Google Scholar 

  28. Moghimian M, Kashani F, Cheraghi MA, Mohammadnejad E (2015) Quality of life and related factors among people with spinal cord injuries in Tehran, Iran. Arch Trauma Res 4:e19280

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pan F, Cheng YX, Zhu CL, Tao FH, Li ZH, Tao HY, He B, Yu L, Ji P, Tang H (2013) Tacolimus postconditioning alleviates apoptotic cell death in rats after spinal cord ischemia-reperfusion injury via up-regulating protein-serine-threonine kinases phosphorylation. J Huazhong Univ Sci Technolog Med Sci 33:852–856

    Article  CAS  PubMed  Google Scholar 

  30. Porta S, Serra SA, Huch M, Valverde MA, Llorens F, Estivill X, Arbones ML, Marti E (2007) RCAN1 (DSCR1) increases neuronal susceptibility to oxidative stress: a potential pathogenic process in neurodegeneration. Hum Mol Genet 16:1039–1050

    Article  CAS  PubMed  Google Scholar 

  31. Shou-Shi W, Ting-Ting S, Ji-Shun N, Hai-Chen C (2015) Preclinical efficacy of Dexmedetomidine on spinal cord injury provoked oxidative renal damage. Ren Fail 37:1190–1197

    PubMed  Google Scholar 

  32. Sun X, Wu Y, Chen B, Zhang Z, Zhou W, Tong Y, Yuan J, Xia K, Gronemeyer H, Flavell RA, Song W (2011) Regulator of calcineurin 1 (RCAN1) facilitates neuronal apoptosis through caspase-3 activation. J Biol Chem 286:9049–9062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun X, Wu Y, Herculano B, Song W (2014) RCAN1 overexpression exacerbates calcium overloading-induced neuronal apoptosis. PLoS ONE 9:e95471

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wong H, Levenga J, Cain P, Rothermel B, Klann E, Hoeffer C (2015) RCAN1 overexpression promotes age-dependent mitochondrial dysregulation related to neurodegeneration in Alzheimer’s disease. Acta Neuropathologica 130(6):829–43

  35. Wu Y, Song W (2013) Regulation of RCAN1 translation and its role in oxidative stress-induced apoptosis. FASEB J 27:208–221

    Article  CAS  PubMed  Google Scholar 

  36. Wu J, Stoica BA, Dinizo M, Pajoohesh-Ganji A, Piao C, Faden AI (2012) Delayed cell cycle pathway modulation facilitates recovery after spinal cord injury. Cell Cycle 11:1782–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wyndaele M, Wyndaele JJ (2006) Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord 44:523–529

    Article  CAS  PubMed  Google Scholar 

  38. Yu D, Thakor DK, Han I, Ropper AE, Haragopal H, Sidman RL, Zafonte R, Schachter SC, Teng YD (2013) Alleviation of chronic pain following rat spinal cord compression injury with multimodal actions of huperzine a. Proc Natl Acad Sci U S A 110:E746–E755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang YK, Liu JT, Peng ZW, Fan H, Yao AH, Cheng P, Liu L, Ju G, Kuang F (2013) Different TLR4 expression and microglia/macrophage activation induced by hemorrhage in the rat spinal cord after compressive injury. J Neuroinflammation 10:112

    PubMed  PubMed Central  Google Scholar 

  40. Zhou Y, Zhang H, Zheng B, Ye L, Zhu S, Johnson NR, Wang Z, Wei X, Chen D, Cao G, Fu X, Li X, Xu HZ, Xiao J (2016) Retinoic acid induced-autophagic flux inhibits ER-stress dependent apoptosis and prevents disruption of blood-spinal cord barrier after spinal cord injury. Int J Biol Sci 12:87–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Wang.

Ethics declarations

All animal experiments were conducted in accordance with the National Institute of Health Guide on the Care and Use of Laboratory Animals and were approved by the Laboratory Animal Users Committee at Xinxiang Medical University (XX201502-3).

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Zhao, Y., Liu, S. et al. Critical role of regulator of calcineurin 1 in spinal cord injury. J Physiol Biochem 72, 605–613 (2016). https://doi.org/10.1007/s13105-016-0499-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-016-0499-z

Keywords

Navigation