Skip to main content

Advertisement

Log in

Dietary long-chain unsaturated fatty acids acutely and differently reduce the activities of lipogenic enzymes and of citrate carrier in rat liver

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The activities of lipogenic enzymes appear to fluctuate with changes in the level and type of dietary fats. Polyunsaturated fatty acids (PUFAs) are known to induce on hepatic de novo lipogenesis (DNL) the highest inhibitory effect, which occurs through a long-term adaptation. Data on the acute effects of dietary fatty acids on DNL are lacking. In this study with rats, the acute 1-day effect of high-fat (15 % w/w) diets (HFDs) enriched in saturated fatty acids (SFAs) or unsaturated fatty acids (UFAs), i.e., monounsaturated (MUFA) and PUFA, of the ω-6 and ω-3 series on DNL and plasma lipid level was investigated; a comparison with a longer time feeding (21 days) was routinely carried out. After 1-day HFD administration UFA, when compared to SFA, reduced plasma triacylglycerol (TAG) level and the activities of the lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), a decreased activity of the citrate carrier (CIC), a mitochondrial protein linked to lipogenesis, was also detected. In this respect, ω-3 PUFA was the most effective. On the other hand, PUFA maintained the effects at longer times, and the acute inhibition induced by MUFA feeding on DNL enzyme and CIC activities was almost nullified at 21 days. Mitochondrial fatty acid composition was slightly but significantly changed both at short- and long-term treatment, whereas the early changes in mitochondrial phospholipid composition vanished in long-term experiments. Our results suggest that in the early phase of administration, UFA coordinately reduced both the activities of de novo lipogenic enzymes and of CIC. ω-3 PUFA showed the greatest effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bartlett K, Eaton S (2004) Mitochondrial beta-oxidation. Eur J Biochem 271(3):462–469

    Article  CAS  PubMed  Google Scholar 

  2. Caputi Jambrenghi A, Paglialonga G, Gnoni A, Zanotti F, Giannico F, Vonghia G, Gnoni GV (2007) Changes in lipid composition and lipogenic enzyme activities in liver of lambs fed omega-6 polyunsaturated fatty acids. Comp Biochem Physiol B Biochem Mol Biol 147(3):498–503

    Article  CAS  PubMed  Google Scholar 

  3. Clarke SD, Romsos DR, Leveilleg A (1977) Time sequence of changes in hepatic fatty acid synthesis in rats meal fed polyunsaturated fatty acids. J Nutr 107:1468–1476

    CAS  PubMed  Google Scholar 

  4. Geelen MJH, Schoots WJ, Bijleveld C, Beynen AC (1995) Dietary medium-chain fatty acids raise and (n-3) polyunsaturated fatty acids lower hepatic triacylglycerol synthesis in rats. J Nutr 125(10):2449–2456

    CAS  PubMed  Google Scholar 

  5. Giudetti AM, Beynen AC, Lemmens AG, Gnoni GV, Geelen MJ (2003) Hepatic fatty acid metabolism in rats fed diets with different contents of C18:0, C18:1 cis and C18:1 trans isomers. Br J Nutr 90(5):887–893

    Article  CAS  PubMed  Google Scholar 

  6. Giudetti AM, Leo M, Siculella L, Gnoni GV (2006) Hypothyroidism down-regulates mitochondrial citrate carrier activity and expression in rat liver. Biochim Biophys Acta 1761(4):484–491

    Article  CAS  PubMed  Google Scholar 

  7. Giudetti AM, Sabetta S, Di Summa R, Leo M, Damiano F, Siculella L, Gnoni GV (2003) Differential effects of coconut oil and fish oil-enriched diets on tricarboxylate carrier in rat liver mitochondria. J Lipid Res 44:2135–2141

    Article  CAS  PubMed  Google Scholar 

  8. Gnoni GV, Priore P, Geelen MJ, Siculella L (2009) The mitochondrial citrate carrier: metabolic role and regulation of its activity and expression. IUBMB Life 61(10):987–994

    Article  CAS  PubMed  Google Scholar 

  9. Hellerstein MK, Schwarz JM, Neese RA (1996) Regulation of hepatic de novo lipogenesis in humans. Annu Rev Nutr 16:523–557

    Article  CAS  PubMed  Google Scholar 

  10. Hülsmann WC, Oerlemans MC, Jansen H (1980) Activity of heparin releasable liver lipase. Dependence on the degree of saturation of the fatty acids in the acylglycerol substrates. Biochim Biophys Acta 618:364–369

    Article  PubMed  Google Scholar 

  11. Hunter JE, Zhang J, Kris-Etherton PM (2010) Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: a systematic review. Am J Clin Nutr 91:46–63

    Article  CAS  PubMed  Google Scholar 

  12. Icard P, Poulain L, Lincet H (2012) Understanding the central role of citrate in the metabolism of cancer cells. Biochim Biophys Acta 1825(1):111–116

    CAS  PubMed  Google Scholar 

  13. Ide T, Kobayashi H, Ashakumary L, Rouyer IA, Takahashi Y, Aoyama T, Hashimoto T, Mizugaki M (2000) Comparative effects of perilla and fish oils on the activity and gene expression of fatty acid oxidation enzymes in rat liver. Biochim Biophys Acta 1485(1):23–35

    Article  CAS  PubMed  Google Scholar 

  14. Javadi M, Geelen MJ, Lemmens AG, Lankhorst A, Schonewille JT, Terpstra AH, Beynen AC (2007) The influence of dietary linoleic and alpha-linolenic acid on body composition and the activities of key enzymes of hepatic lipogenesis and fatty acid oxidation in mice. J Anim Physiol Anim Nutr (Berl) 91(1–2):11–18

    Article  CAS  Google Scholar 

  15. Kaplan RS, Mayor JA, Blackwell R, Wilson GL, Schaffer SW (1991) Functional levels of mitochondrial anion transport proteins in non-insulin-dependent diabetes mellitus. Mol Cell Biochem 107(1):79–86

    Article  CAS  PubMed  Google Scholar 

  16. Kroon PA, Powell EE (1992) Liver, lipoproteins and disease: I Biochemistry of lipoprotein metabolism. J Gastroenterol Hepatol 7:214–224

    Article  CAS  PubMed  Google Scholar 

  17. Leibowitz SF, Dourmashkin JT, Chang GQ, Hill JO, Gayles EC, Fried SK, Wang J (2004) Acute high-fat diet paradigms link galanin to triglycerides and their transport and metabolism in muscle. Brain Res 1008(2):168–178

    Article  CAS  PubMed  Google Scholar 

  18. Lottenberg AM, Afonso Mda S, Lavrador MS, Machado RM, Nakandakare ER (2012) The role of dietary fatty acids in the pathology of metabolic syndrome. J Nutr Biochem 23(9):1027–1040

    Article  CAS  PubMed  Google Scholar 

  19. Massaro M, Scoditti E, Carluccio MA, Campana MC, De Caterina R (2010) Omega-3 fatty acids, inflammation and angiogenesis: basic mechanisms behind the cardioprotective effects of fish and fish oils. Cell Mol Biol 56(1):59–82

    CAS  PubMed  Google Scholar 

  20. McGarry JD, Stark MJ, Foster DW (1978) Hepatic malonyl-CoA levels of fed, fasted and diabetic rats as measured using a simple radioisotopic assay. J Biol Chem 253(22):8291–8293

    CAS  PubMed  Google Scholar 

  21. Morciano P, Carrisi C, Capobianco L, Mannini L, Burgio G, Cestra G, De Benedetto GE, Corona DF, Musio A, Cenci G (2009) A conserved role for the mitochondrial citrate transporter Sea/SLC25A1 in the maintenance of chromosome integrity. Hum Mol Genet 18(21):4180–4188

    Article  CAS  PubMed  Google Scholar 

  22. Muoio DM, Newgard CB (2006) Obesity-related derangements in metabolic regulation. Annu Rev Biochem 75:367–401

    Article  CAS  PubMed  Google Scholar 

  23. Palmieri F (2004) The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch 447(5):689–709

    Article  CAS  PubMed  Google Scholar 

  24. Palmieri F, Indiveri C, Bisaccia F, Krämer R (1993) Functional properties of purified and reconstituted mitochondrial metabolite carriers. J Bioenerg Biomembr 25:525–535

    Article  CAS  PubMed  Google Scholar 

  25. Pamplona R, Barja G, Portero-Otín M (2002) Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: a homeoviscous-longevity adaptation? Ann N Y Acad Sci 959:475–490

    Article  CAS  PubMed  Google Scholar 

  26. Paradies G, Ruggiero FM (1990) Enhanced activity of the tricarboxylate carrier and modification of lipids in hepatic mitochondria from hyperthyroid rats. Arch Biochem Biophys 278:425–430

    Article  CAS  PubMed  Google Scholar 

  27. Priore P, Stanca E, Gnoni GV, Siculella L (2012) Dietary fat types differently modulate the activity and expression of mitochondrial carnitine/acylcarnitine translocase in rat liver. Biochim Biophys Acta 1821(10):1341–1349

    Article  CAS  PubMed  Google Scholar 

  28. Schmitz G, Ecker J (2008) The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res 47(2):147–155

    Article  CAS  PubMed  Google Scholar 

  29. Senthil Kumar SP, Shen M, Spicer EG, Goudjo-Ako AJ, Stumph JD, Zhang J, Shi H (2014) Distinct metabolic effects following short-term exposure of different high-fat diets in male and female mice. Endocr J 61(5):457–470

    Article  PubMed  PubMed Central  Google Scholar 

  30. Siculella L, Damiano F, Sabetta S, Gnoni GV (2004) n-6 PUFAs down regulate expression of the tricarboxylate carrier in rat liver by transcriptional and posttranscriptional mechanisms. J Lipid Res 45:1333–1340

    Article  CAS  PubMed  Google Scholar 

  31. Siculella L, Sabetta S, Damiano F, Giudetti AM, Gnoni GV (2004) Different dietary fatty acids have dissimilar effects on activity and gene expression of mitochondrial tricarboxylate carrier in rat liver. FEBS Lett 578:280–284

    Article  CAS  PubMed  Google Scholar 

  32. Takeuchi H, Nakamoto T, Mori Y, Kawakami M, Mabuchi H, Ohishi Y, Ichikawa N, Koike A, Masuda K (2001) Comparative effects of dietary fat types on hepatic enzyme activities related to the synthesis and oxidation of fatty acid and to lipogenesis in rats. Biosci Biotechnol Biochem 65(8):1748–1754

    Article  CAS  PubMed  Google Scholar 

  33. Toussant MJ, Wilson MD, Clarke SD (1981) Coordinate suppression of liver acetyl-CoA carboxylase and fatty acid synthetase by polyunsaturated fat. J Nutr 111(1):146–153

    CAS  PubMed  Google Scholar 

  34. Wilson MD, Blake WL, Salati LM, Clarke SD (1990) Potency of polyunsaturated and saturated fats as short-term inhibitors of hepatic lipogenesis in rats. J Nutr 120(6):544–552

    CAS  PubMed  Google Scholar 

  35. Yeo YK, Kim JS, Lee JR, Lee JY, Chung SW, Kim HJ, Horrocks LA, Park YS (2000) Plasma phospholipids, including plasmalogens, after consumption of diets enriched in long-chain n-3 fatty acids. J Biochem Mol Biol 33:499–505

    CAS  Google Scholar 

  36. Zara V, Giudetti AM, Siculella L, Palmieri F, Gnoni GV (2001) Covariance of tricarboxylate carrier activity and lipogenesis in liver of polyunsaturated fatty acid (n-6) fed rats. Eur J Biochem 268:5734–5739

    Article  CAS  PubMed  Google Scholar 

  37. Zara V, Gnoni GV (1995) Effect of starvation on the activity of the mitochondrial tricarboxylate carrier. Biochim Biophys Acta 1239:33–38

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Math J.H. Geelen for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna M. Giudetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnoni, A., Giudetti, A.M. Dietary long-chain unsaturated fatty acids acutely and differently reduce the activities of lipogenic enzymes and of citrate carrier in rat liver. J Physiol Biochem 72, 485–494 (2016). https://doi.org/10.1007/s13105-016-0495-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-016-0495-3

Keywords

Navigation