Skip to main content
Log in

Local fluid transfer regulation in heart extracellular matrix

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The interstitial myocardial matrix is a complex and dynamic structure that adapts to local fluctuations in pressure and actively contributes to the heart’s fluid exchange and hydration. However, classical physiologic models tend to treat it as a passive conduit for water and solute, perhaps because local interstitial regulatory mechanisms are not easily accessible to experiment in vivo. Here, we examined the interstitial contribution to the fluid-driving pressure ex vivo. Interstitial hydration potentials were determined from influx/efflux rates measured in explants from healthy and ischemia-reperfusion-injured pigs during colloid osmotic pressure titrations. Adaptive responses were further explored by isolating myocardial fibroblasts and measuring their contractile responses to water activity changes in vitro. Results show hydration potentials between 5 and 60 mmHg in healthy myocardia and shifts in excess of 200 mmHg in edematous myocardia after ischemia-reperfusion injury. Further, rates of fluid transfer were temperature-dependent, and in collagen gel contraction assays, myocardial fibroblasts tended to preserve the micro-environment’s hydration volume by slowing fluid efflux rates at pressures above 40 mmHg. Our studies quantify components of the fluid-driving forces in the heart interstitium that the classical Starling’s equation does not explicitly consider. Measured hydration potentials in healthy myocardia and shifts with edema are larger than predicted from the known values of hydrostatic and colloid osmotic interstitial fluid pressures. Together with fibroblast responses in vitro, they are consistent with regulatory mechanisms that add local biological controls to classic fluid-balance models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Argenta LC, Morykwas MJ, Mays JJ, Thompson EA, Hammon JW, Jordan JE (2010) Reduction of myocardial ischemia-reperfusion injury by mechanical tissue resuscitation using sub-atmospheric pressure. J Card Surg 25:247–252

    Article  PubMed  Google Scholar 

  2. Aukland K, Reed RK (1993) Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev 73:1–78

    CAS  PubMed  Google Scholar 

  3. Bergethon PR, Simons ER (1990) Multiple-component systems. In: Bergethon PR, Simons ER (eds) Biophysical chemistry. Molecules to membranes. Springer, New York, pp 59–91

    Chapter  Google Scholar 

  4. Bijnens B, Sutherland GR (2008) Myocardial oedema: a forgotten entity essential to the understanding of regional function after ischaemia or reperfusion injury. Heart 94:1117–1119

    Article  PubMed  Google Scholar 

  5. Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437:640–647

    Article  CAS  PubMed  Google Scholar 

  6. Comper WD, Laurent TC (1978) Physiological function of connective tissue polysaccharides. Physiol Rev 58:255–315

    CAS  PubMed  Google Scholar 

  7. Dongaonkar RM, Stewart RH, Geissler HJ, Laine GA (2010) Myocardial microvascular permeability, interstitial oedema, and compromised cardiac function. Cardiovasc Res 87:331–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Evans R, Marconi UMB (1987) Phase-equilibria and solvation forces for fluids confined between parallel walls. J Chem Phys 86:7138–7148

    Article  CAS  Google Scholar 

  9. Fitz-Roy EC (1984) Mechanics and thermodynamics of transcapillary exchange. In: Renkin EM, Michel CC (eds) Handbook of physiology. The cardiovascular system, vol 4, Microcirculation. American Physiological Society, Bethesda, pp 309–474

    Google Scholar 

  10. Galie PA, Russell MW, Westfall MV, Stegemann JP (2012) Interstitial fluid flow and cyclic strain differentially regulate cardiac fibroblast activation via AT1R and TGF-beta1. Exp Cell Res 318:75–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghugre NR, Ramanan V, Pop M, Yang Y, Barry J, Qiang B, Connelly KA, Dick AJ, Wright GA (2011) Quantitative tracking of edema, hemorrhage, and microvascular obstruction in subacute myocardial infarction in a porcine model by MRI. Magn Reson Med 66:1129–1141

    Article  PubMed  Google Scholar 

  12. Glasstone S, Laidler KJ, Eyring H (1941) Introduction. In: Glasstone S, Laidler KJ, Eyring H (eds) The theory of rate processes. The kinetics of chemical reactions, viscosity, diffusion and electrochemical phenomena. McGraw-Hill, New York, pp 1–27

    Google Scholar 

  13. Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10:63–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jennings RB, Reimer KA (1981) Lethal myocardial ischemic injury. Am J Pathol 102:241–255

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kakkar R, Lee RT (2010) Intramyocardial fibroblast myocyte communication. Circ Res 106:47–57. doi:10.1161/circresaha.109.207456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kellen MR, Bassingthwaighte JB (2003) An integrative model of coupled water and solute exchange in the heart. Am J Physiol Heart Circ Physiol 285:H1303–H1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kirk ES, Honig CR (1964) An experimental and theoretical analysis of myocardial tissue pressure. Am J Physiol 207:361–367

    CAS  PubMed  Google Scholar 

  18. Koser J, Gaiser S, Muller B (2011) Contractile cell forces exerted on rigid substrates. Eur Cell Mater 21:479–486, discussion 486-477

    CAS  PubMed  Google Scholar 

  19. Laine GA, Allen SJ (1991) Left ventricular myocardial edema. Lymph flow, interstitial fibrosis, and cardiac function. Circ Res 68:1713–1721

    Article  CAS  PubMed  Google Scholar 

  20. Laine GA, Granger HJ (1985) Microvascular, interstitial, and lymphatic interactions in normal heart. Am J Physiol 249:H834–H842

    CAS  PubMed  Google Scholar 

  21. Levick JR, Michel CC (2010) Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res 87:198–210

    Article  CAS  PubMed  Google Scholar 

  22. Masci PG, Bogaert J (2012) Post myocardial infarction of the left ventricle: the course ahead seen by cardiac MRI. Cardiovasc Diagn Ther 2:113–127

    PubMed  PubMed Central  Google Scholar 

  23. McGee MP, Morykwas M, Levi-Polyachenko N, Argenta L (2009) Swelling and pressure-volume relationships in the dermis measured by osmotic-stress technique. Am J Physiol Regul Integr Comp Physiol 296:R1907–R1913

    Article  CAS  PubMed  Google Scholar 

  24. McGee MP, Morykwas M, Shelton J, Argenta L (2012) Collagen unfolding accelerates water influx, determining hydration in the interstitial matrix. Biophys J 103:2157–2166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McGee MP, Morykwas MJ, Argenta LC (2011) The local pathology of interstitial edema: surface tension increases hydration potential in heat-damaged skin. Wound Repair Regen 19:358–367

    Article  PubMed  Google Scholar 

  26. McGee MP, Teuschler H (1995) Protein hydration during generation of coagulation factor Xa in aqueous phase and on phospholipid membranes. J Biol Chem 270:15170–15174

    Article  CAS  PubMed  Google Scholar 

  27. Parsegian VA, Rand RP, Rau DC (1995) Macromolecules and water: probing with osmotic stress. Methods Enzymol 259:43–94

    Article  CAS  PubMed  Google Scholar 

  28. Pepper MS, Skobe M (2003) Lymphatic endothelium: morphological, molecular and functional properties. J Cell Biol 163:209–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rizzo V (2009) Enhanced interstitial flow as a contributing factor in neointima formation: (shear) stressing vascular wall cell types other than the endothelium. Am J Physiol Heart Circ Physiol 297:H1196–H1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Robinson TF (1983) The physiological relationship between connective tissue and contractile filaments in heart muscle. Einstein Q 1:121–127

    Google Scholar 

  31. Scott JE (2007) Chemical morphology: the chemistry of our shape, in vivo and in vitro. Struct Chem 18:257–265

    Article  CAS  Google Scholar 

  32. Shi ZD, Tarbell JM (2011) Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Ann Biomed Eng 39:1608–1619

    Article  PubMed  PubMed Central  Google Scholar 

  33. Souders CA, Bowers SL, Baudino TA (2009) Cardiac fibroblast: the renaissance cell. Circ Res 105:1164–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Starling EH (1896) On the absorption of fluids from the connective tissue spaces. J Physiol 19:312–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Swartz MA, Fleury ME (2007) Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng 9:229–256

    Article  CAS  PubMed  Google Scholar 

  36. White SK, Sado DM, Flett AS, Moon JC (2012) Characterising the myocardial interstitial space: the clinical relevance of non-invasive imaging. Heart 98:773–779

    Article  PubMed  Google Scholar 

  37. Wiig H, Rubin K, Reed RK (2003) New and active role of the interstitium in control of interstitial fluid pressure: potential therapeutic consequences. Acta Anaesthesiol Scand 47:111–121

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Lynne Li, Dana Jasso, and Mary Kearns provided technical skills and assistance with data reduction; Megan Lane provided assistance with animal surgeries; and John Olson provided expert technical assistance with the imaging in the Small Animal MRI facilities of Wake Forest University. IPAM (Institute of Pure and Applied Mathematics) at UCLA contributed to this work by providing a friendly forum for the exchange of perspectives among mathematicians, physicists, and biologists. The research was supported in part by a Cheek Foundation Grant to the Department of Plastic and Reconstructive Surgery, Wake Forest University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria P. McGee.

Ethics declarations

These animal studies comply with the National Institutes of Health Guide for the Care and Use of Laboratory Animals in protocols approved by the Institutional Animal Care and Use Committee.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGee, M.P., Morykwas, M.J., Jordan, J.E. et al. Local fluid transfer regulation in heart extracellular matrix. J Physiol Biochem 72, 255–268 (2016). https://doi.org/10.1007/s13105-016-0473-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-016-0473-9

Keywords

Navigation