Ex vivo motility in the base of the rabbit caecum and its associated structures: an electrophysiological and spatiotemporal analysis


We examined the coordination between contractile events at different sites in the basal portion of the rabbit caecum and its associated structures that were identified by electrophysiological recordings with simultaneous one-dimensional, and a novel two-dimensional, spatiotemporal mapping technique. The findings of this work provide evidence that the caecum and proximal colon/ampulla coli act reflexly to augment colonic outflow when the caecum is distended and mass peristalsis instituted, the action of the latter overriding the inherent rhythm and direction of haustral propagation in the adjacent portion of the proximal colon but not in the terminal ileum. Further, the findings suggest that the action of the sacculus rotundus may result from its distension with chyme by ileal peristalsis and that the subsequent propagation of contraction along the basal wall of the caecum towards the colon may be augmented by this local distension.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Björnhag G (1972) Separation and delay of contents in the rabbit colon. Swedish J Agric Res 2:125–136

    Google Scholar 

  2. 2.

    Björnhag G (1981) Separation and retrograde transport in the large intestine of herbivores. Livest Prod Sci 8:351–360

    Article  Google Scholar 

  3. 3.

    Burns AJ, Thapar N (2006) Advances in ontogeny of the enteric nervous system. Neurogastroenterol Motil 18(10):876–887

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Corazziari E, Barberani F, Tosoni M, Boschetto S, Torsoli A (1991) Perendoscopic manometry of the distal ileum and ileocecal junction in humans. Gastroenterology 101(5):1314–1319

    CAS  PubMed  Google Scholar 

  5. 5.

    Cronin CG, Delappe E, Lohan DG, Roche C, Murphy JM (2010) Normal small bowel wall characteristics on MR enterography. Eur J Radiology 75(2):207–211

    Article  Google Scholar 

  6. 6.

    Dinning PG, Bampton PA, Kennedy ML, Kajimoto T, Lubowski DZ, de Carle DJ, Cook IJ (1999) Basal pressure patterns and reflexive motor responses in the human ileocolonic junction. Am J Physiol 276(2 Pt 1):G331–G340

    CAS  PubMed  Google Scholar 

  7. 7.

    Dinning PG, Bampton PA, Kennedy ML, Cook IJ (1999) Relationship between terminal ileal pressure waves and propagating proximal colonic pressure waves. Am J Physiol 277(5 Pt 1):G983–982

    CAS  PubMed  Google Scholar 

  8. 8.

    Dinning PG, Szczesniak MM, Cook IJ (2008) Proximal colonic propagating pressure waves sequences and their relationship with movements of content in the proximal human colon. Neurogastroenterol Motil 20:512–520

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Ehrlein HJ, Reich H, Schwinger M (1983) Colonic motility and transit of digesta during hard and soft faeces formation in rabbits. J Physiol 338:75–86

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  10. 10.

    Ehrlein HJ, Ruoff G (1982) Cecal motility and flow of ingesta from the ileum to the cecum, appendix, and colon in rabbits. In: Wienbeck M (ed) Motility of the digestive tract. Raven, New York, pp 475–481

    Google Scholar 

  11. 11.

    Ehrlein H, JM Scheman (2006) Gastrointestinal Motility; Technische Universität München: Munich. Retrieved April 20, 2014, from http://humanbiology.wzw.tum.de/fileadmin/Bilder/tutorials/tutorial.pdf

  12. 12.

    Fioramonti J, Ruckebusch Y (1978) On the control of caecal motility in sheep. Ann Rech Veterinaires 9(3):517–521

    CAS  Google Scholar 

  13. 13.

    Grasa L, Rebollar E, Arruebo MP, Plaza MA, Murillo MD (2004) The role of Ca2+ in the contractility of rabbit small intestine in vitro. J Physiol Pharmacol 55(3):639–650

    CAS  PubMed  Google Scholar 

  14. 14.

    Hipper K, Ehrlein HJ (2001) Motility of the large intestine and flow of digesta in pigs. Res Vet Sci 71(2):93–100

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Hulls C, Lentle RG, de Loubens C, Janssen PW, Chambers P, Stafford KJ (2012) Spatiotemporal mapping of ex vivo motility in the caecum of the rabbit. J Comp Physiol B 182(2):287–297

    Article  PubMed  Google Scholar 

  16. 16.

    Janssen PWM, Lentle RG. Spatiotemporal mapping techniques for quantifying gut motility.

  17. 17.

    Janssen PWM, Lentle RG, Hulls C, Ravindran V, Amerah AM (2009) Spatiotemporal mapping of the motility of the isolated chicken caecum. J Comp Physiol B179:593–604

    Article  Google Scholar 

  18. 18.

    Kellow JE, Phillips SF (1987) Altered small bowel motility in irritable bowel syndrome is correlated with symptoms. Gastroenterology 92(6):1885–1893

    CAS  PubMed  Google Scholar 

  19. 19.

    Kerlin P, Zinsmeister A, Phillips S (1983) Motor response to food of the ileum, proximal colon and distal colon of healthy humans. Gastroenterology 84:762–770

    CAS  PubMed  Google Scholar 

  20. 20.

    Lentle RG, Janssen PWM, Asvarujanon P, Chambers P, Stafford KJ, Hemar Y (2007) High definition mapping of circular and longitudinal motility in the terminal ileum of the brushtail possum trichosurus vulpecula with watery and viscous perfusates. J Comp Physiol B177:543–556

    Article  Google Scholar 

  21. 21.

    Lentle RG, Janssen PWM, Asvarujanon P, Chambers P, Stafford KJ, Henmar Y (2008) High-definition spatiotemporal mapping of the contractile activity in the isolated proximal colon of the rabbit. J Comp Physiol B 178:257–268

    Article  PubMed  Google Scholar 

  22. 22.

    Lester GD, Bolton JR, Thurgate SM (1992) Computer-based collection and analysis of myoelectric activity of the intestine in horses. Am J Vet Res 53(9):1548–1552

    CAS  PubMed  Google Scholar 

  23. 23.

    Maslennikova LD (1961) On relation between the motor function of the intestine and the gradient of its nervous elements. Byull Eksp Biol Med 52(8):117–123

    CAS  Google Scholar 

  24. 24.

    Ogata M, Mateer JR, Condon RE (1996) Prospective evaluation of abdominal sonography for the diagnosis of bowel obstruction. Ann Surg 223(3):237–241

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  25. 25.

    Pluja L, Alberti E, Fernandez E, Mikkelsen HB, Thuneberg L, Jimenez M (2001) Evidence supporting presence of two pacemakers in rat colon. Am J Physiol Gastrointest Liver Physiol 281:G255–G266

    CAS  PubMed  Google Scholar 

  26. 26.

    Quigley EM, Borody TJ, Phillips SF (1984) Motility of the terminal ileum and ileocecal sphincter in healthy humans. Gastroenterology 87:857–866

    CAS  PubMed  Google Scholar 

  27. 27.

    Ruckebusch Y, Hörnicke H (1977) Motility of the rabbits colon and cecotrophy. Physiol Behav 18:871–878

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Sarna SK (1986) Myoelectric correlates of colonic motor complexes and contractile activity. Am J Physiol 250(2 Pt 1):G213–G220

    CAS  PubMed  Google Scholar 

  29. 29.

    Shafik A, El-Sibai O, Ahmed A (2001) Study of the mechanism underlying the difference in motility between the large and small intestine: the "single" and "multiple" pacemaker theory. Front Biosci 1(6):B1–B5

    Google Scholar 

  30. 30.

    Silva AC, Pimenta M, Guimarães LS (2009) Small bowel obstruction: what to look for. Radiographics 29(2):423–439

    Article  PubMed  Google Scholar 

  31. 31.

    Snipes RL (1978) Anatomy of the rabbit caecum. Anat embryol 155(1):57–80

    Article  CAS  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Roger G. Lentle.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hulls, C., Lentle, R.G., Reynolds, G.W. et al. Ex vivo motility in the base of the rabbit caecum and its associated structures: an electrophysiological and spatiotemporal analysis. J Physiol Biochem 72, 45–57 (2016). https://doi.org/10.1007/s13105-015-0455-3

Download citation


  • Caecum
  • Rabbit
  • Contractile activity
  • Coordination
  • Spatiotemporal