Advertisement

Journal of Physiology and Biochemistry

, Volume 72, Issue 1, pp 45–57 | Cite as

Ex vivo motility in the base of the rabbit caecum and its associated structures: an electrophysiological and spatiotemporal analysis

  • Corrin Hulls
  • Roger G. LentleEmail author
  • Gordon W Reynolds
  • Patrick W. M. Janssen
  • Paul Chambers
  • Clement de Loubens
Original Paper

Abstract

We examined the coordination between contractile events at different sites in the basal portion of the rabbit caecum and its associated structures that were identified by electrophysiological recordings with simultaneous one-dimensional, and a novel two-dimensional, spatiotemporal mapping technique. The findings of this work provide evidence that the caecum and proximal colon/ampulla coli act reflexly to augment colonic outflow when the caecum is distended and mass peristalsis instituted, the action of the latter overriding the inherent rhythm and direction of haustral propagation in the adjacent portion of the proximal colon but not in the terminal ileum. Further, the findings suggest that the action of the sacculus rotundus may result from its distension with chyme by ileal peristalsis and that the subsequent propagation of contraction along the basal wall of the caecum towards the colon may be augmented by this local distension.

Keywords

Caecum Rabbit Contractile activity Coordination Spatiotemporal 

References

  1. 1.
    Björnhag G (1972) Separation and delay of contents in the rabbit colon. Swedish J Agric Res 2:125–136Google Scholar
  2. 2.
    Björnhag G (1981) Separation and retrograde transport in the large intestine of herbivores. Livest Prod Sci 8:351–360CrossRefGoogle Scholar
  3. 3.
    Burns AJ, Thapar N (2006) Advances in ontogeny of the enteric nervous system. Neurogastroenterol Motil 18(10):876–887CrossRefPubMedGoogle Scholar
  4. 4.
    Corazziari E, Barberani F, Tosoni M, Boschetto S, Torsoli A (1991) Perendoscopic manometry of the distal ileum and ileocecal junction in humans. Gastroenterology 101(5):1314–1319PubMedGoogle Scholar
  5. 5.
    Cronin CG, Delappe E, Lohan DG, Roche C, Murphy JM (2010) Normal small bowel wall characteristics on MR enterography. Eur J Radiology 75(2):207–211CrossRefGoogle Scholar
  6. 6.
    Dinning PG, Bampton PA, Kennedy ML, Kajimoto T, Lubowski DZ, de Carle DJ, Cook IJ (1999) Basal pressure patterns and reflexive motor responses in the human ileocolonic junction. Am J Physiol 276(2 Pt 1):G331–G340PubMedGoogle Scholar
  7. 7.
    Dinning PG, Bampton PA, Kennedy ML, Cook IJ (1999) Relationship between terminal ileal pressure waves and propagating proximal colonic pressure waves. Am J Physiol 277(5 Pt 1):G983–982PubMedGoogle Scholar
  8. 8.
    Dinning PG, Szczesniak MM, Cook IJ (2008) Proximal colonic propagating pressure waves sequences and their relationship with movements of content in the proximal human colon. Neurogastroenterol Motil 20:512–520CrossRefPubMedGoogle Scholar
  9. 9.
    Ehrlein HJ, Reich H, Schwinger M (1983) Colonic motility and transit of digesta during hard and soft faeces formation in rabbits. J Physiol 338:75–86PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Ehrlein HJ, Ruoff G (1982) Cecal motility and flow of ingesta from the ileum to the cecum, appendix, and colon in rabbits. In: Wienbeck M (ed) Motility of the digestive tract. Raven, New York, pp 475–481Google Scholar
  11. 11.
    Ehrlein H, JM Scheman (2006) Gastrointestinal Motility; Technische Universität München: Munich. Retrieved April 20, 2014, from http://humanbiology.wzw.tum.de/fileadmin/Bilder/tutorials/tutorial.pdf
  12. 12.
    Fioramonti J, Ruckebusch Y (1978) On the control of caecal motility in sheep. Ann Rech Veterinaires 9(3):517–521Google Scholar
  13. 13.
    Grasa L, Rebollar E, Arruebo MP, Plaza MA, Murillo MD (2004) The role of Ca2+ in the contractility of rabbit small intestine in vitro. J Physiol Pharmacol 55(3):639–650PubMedGoogle Scholar
  14. 14.
    Hipper K, Ehrlein HJ (2001) Motility of the large intestine and flow of digesta in pigs. Res Vet Sci 71(2):93–100CrossRefPubMedGoogle Scholar
  15. 15.
    Hulls C, Lentle RG, de Loubens C, Janssen PW, Chambers P, Stafford KJ (2012) Spatiotemporal mapping of ex vivo motility in the caecum of the rabbit. J Comp Physiol B 182(2):287–297CrossRefPubMedGoogle Scholar
  16. 16.
    Janssen PWM, Lentle RG. Spatiotemporal mapping techniques for quantifying gut motility.Google Scholar
  17. 17.
    Janssen PWM, Lentle RG, Hulls C, Ravindran V, Amerah AM (2009) Spatiotemporal mapping of the motility of the isolated chicken caecum. J Comp Physiol B179:593–604CrossRefGoogle Scholar
  18. 18.
    Kellow JE, Phillips SF (1987) Altered small bowel motility in irritable bowel syndrome is correlated with symptoms. Gastroenterology 92(6):1885–1893PubMedGoogle Scholar
  19. 19.
    Kerlin P, Zinsmeister A, Phillips S (1983) Motor response to food of the ileum, proximal colon and distal colon of healthy humans. Gastroenterology 84:762–770PubMedGoogle Scholar
  20. 20.
    Lentle RG, Janssen PWM, Asvarujanon P, Chambers P, Stafford KJ, Hemar Y (2007) High definition mapping of circular and longitudinal motility in the terminal ileum of the brushtail possum trichosurus vulpecula with watery and viscous perfusates. J Comp Physiol B177:543–556CrossRefGoogle Scholar
  21. 21.
    Lentle RG, Janssen PWM, Asvarujanon P, Chambers P, Stafford KJ, Henmar Y (2008) High-definition spatiotemporal mapping of the contractile activity in the isolated proximal colon of the rabbit. J Comp Physiol B 178:257–268CrossRefPubMedGoogle Scholar
  22. 22.
    Lester GD, Bolton JR, Thurgate SM (1992) Computer-based collection and analysis of myoelectric activity of the intestine in horses. Am J Vet Res 53(9):1548–1552PubMedGoogle Scholar
  23. 23.
    Maslennikova LD (1961) On relation between the motor function of the intestine and the gradient of its nervous elements. Byull Eksp Biol Med 52(8):117–123Google Scholar
  24. 24.
    Ogata M, Mateer JR, Condon RE (1996) Prospective evaluation of abdominal sonography for the diagnosis of bowel obstruction. Ann Surg 223(3):237–241PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Pluja L, Alberti E, Fernandez E, Mikkelsen HB, Thuneberg L, Jimenez M (2001) Evidence supporting presence of two pacemakers in rat colon. Am J Physiol Gastrointest Liver Physiol 281:G255–G266PubMedGoogle Scholar
  26. 26.
    Quigley EM, Borody TJ, Phillips SF (1984) Motility of the terminal ileum and ileocecal sphincter in healthy humans. Gastroenterology 87:857–866PubMedGoogle Scholar
  27. 27.
    Ruckebusch Y, Hörnicke H (1977) Motility of the rabbits colon and cecotrophy. Physiol Behav 18:871–878CrossRefPubMedGoogle Scholar
  28. 28.
    Sarna SK (1986) Myoelectric correlates of colonic motor complexes and contractile activity. Am J Physiol 250(2 Pt 1):G213–G220PubMedGoogle Scholar
  29. 29.
    Shafik A, El-Sibai O, Ahmed A (2001) Study of the mechanism underlying the difference in motility between the large and small intestine: the "single" and "multiple" pacemaker theory. Front Biosci 1(6):B1–B5Google Scholar
  30. 30.
    Silva AC, Pimenta M, Guimarães LS (2009) Small bowel obstruction: what to look for. Radiographics 29(2):423–439CrossRefPubMedGoogle Scholar
  31. 31.
    Snipes RL (1978) Anatomy of the rabbit caecum. Anat embryol 155(1):57–80CrossRefPubMedGoogle Scholar

Copyright information

© University of Navarra 2015

Authors and Affiliations

  • Corrin Hulls
    • 1
  • Roger G. Lentle
    • 1
    Email author
  • Gordon W Reynolds
    • 1
  • Patrick W. M. Janssen
    • 1
  • Paul Chambers
    • 2
  • Clement de Loubens
    • 3
  1. 1.Institute of Food, Nutrition and Human HealthMassey UniversityPalmerston NorthNew Zealand
  2. 2.Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
  3. 3.UMR 782 Génie et Microbiologie des Procédés AlimentairesINRA, AgroParisTech CBAIThiverval GrignonFrance

Personalised recommendations