Skip to main content
Log in

Resveratrol improves high-fat diet induced insulin resistance by rebalancing subsarcolemmal mitochondrial oxidation and antioxidantion

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Although resveratrol (RES) is thought to be a key regulator of insulin sensitivity in rodents, the exact mechanism underlying this effect remains unclear. Therefore, we sought to investigate how RES affects skeletal muscle oxidative and antioxidant levels of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial populations in high-fat diet (HFD)-induced insulin resistance (IR) rats. Systemic and skeletal muscle insulin sensitivity together with expressions of several genes related to mitochondrial biogenesis and skeletal muscle SIRT1, SIRT3 protein levels were studied in rats fed a normal diet, a HFD, and a HFD with intervention of RES for 8 weeks. Oxidative stress levels and antioxidant enzyme activities were assessed in SS and IMF mitochondria. HFD fed rats exhibited obvious systemic and skeletal muscle IR as well as decreased SIRT1 and SIRT3 expressions, mitochondrial DNA (mtDNA), and mitochondrial biogenesis (p < 0.05). Both SS and IMF mitochondria demonstrated elevated reactive oxygen species (ROS) and malondialdehyde (MDA) levels. In addition, SS mitochondrial antioxidant enzyme activities were significantly lower, while IMF mitochondrial antioxidant enzyme activities were higher (p < 0.05). By contrast, RES treatment protected rats against diet induced IR, increased SIRT1 and SIRT3 expressions, mtDNA, and mitochondrial biogenesis (p < 0.05). Moreover, the activities of SS and IMF mitochondrial antioxidant enzymes were increased, which reverted the increased SS mitochondrial oxidative stress levels (p < 0.05). This study suggests that RES ameliorates insulin sensitivity consistent with improved SIRT3 expressions and rebalance between SS mitochondrial oxidative stress and antioxidant competence in HFD rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

RES:

Resveratrol

SS:

Subsarcolemmal

IMF:

Intermyofibrillar

HFD:

High-fat diet

IR:

Insulin resistance

mtDNA:

Mitochondrial DNA

ROS:

Reactive oxygen species

MDA:

Malondialdehyde

TA:

Tibialis anterior

PGC-1α:

Peroxisome proliferator-activated receptor-γ coactivator-1α

NRF-1:

Nuclear respiratory factor-1

mtTFA:

Mitochondrial transcription factor A

tSOD:

Total superoxide dismutase

CAT:

Catalase

GPx:

Glutathione peroxidase

FBG:

Fasting blood glucose

Fins:

Fasting insulin

GIR:

Glucose infusion rate

References

  1. Ashino NG, Saito KN, Souza FD, Nakutz FS, Roman EA, Velloso LA, Torsoni AS, Torsoni MA (2012) Maternal high-fat feeding through pregnancy and lactation predisposes mouse offspring to molecular insulin resistance and fatty liver. J Nutr Biochem 23:341–348

    Article  CAS  PubMed  Google Scholar 

  2. Boden MJ, Brandon AE, Tid-Ang JD, Preston E, Wilks D, Stuart E, Cleasby ME, Turner N, Cooney GJ, Kraegen EW (2012) Overexpression of manganese superoxide dismutase ameliorates high-fat diet-induced insulin resistance in rat skeletal muscle. Am J Physiol Endocrinol Metab 303:E798–E805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bonnard C, Durand A, Peyrol S, Chanseaume E, Chauvin MA, Morio B, Vidal H, Rieusset J (2008) Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest 118:789–800

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Boyle KE, Newsom SA, Janssen RC, Lappas M, Friedman JE (2013) Skeletal muscle MnSOD, mitochondrial complex II, and SIRT3 enzyme activities Are decreased in maternal obesity during human pregnancy and gestational diabetes mellitus. J Clin Endocrinol Metab 98:E1601–E1609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Chen LL, Hu X, Zheng J, Zhang HH, Kong W, Yang WH, Zeng TS, Zhang JY, Yue L (2010) Increases in energy intake, insulin resistance and stress in rats before Wenchuan earthquake far from the epicenter. Exp Biol Med (Maywood) 235:1216–1223

    Article  CAS  Google Scholar 

  6. Chen LL, Zhang HH, Zheng J, Hu X, Kong W, Hu D, Wang SX, Zhang P (2011) Resveratrol attenuates high-fat diet-induced insulin resistance by influencing skeletal muscle lipid transport and subsarcolemmal mitochondrial beta-oxidation. Metabolism 60:1598–1609

    Article  CAS  PubMed  Google Scholar 

  7. Dabkowski ER, Baseler WA, Williamson CL, Powell M, Razunguzwa TT, Frisbee JC, Hollander JM (2010) Mitochondrial dysfunction in the type 2 diabetic heart is associated with alterations in spatially distinct mitochondrial proteomes. Am J Physiol Heart Circ Physiol 299:H529–H540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. de Wilde J, Mohren R, van den Berg S, Boekschoten M, Dijk KW, de Groot P, Muller M, Mariman E, Smit E (2008) Short-term high fat-feeding results in morphological and metabolic adaptations in the skeletal muscle of C57BL/6J mice. Physiol Genomics 32:360–369

    Article  PubMed  Google Scholar 

  9. Dela F, Helge JW (2013) Insulin resistance and mitochondrial function in skeletal muscle. Int J Biochem Cell Biol 45:11–15

    Article  CAS  PubMed  Google Scholar 

  10. Goth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196:143–151

    Article  CAS  PubMed  Google Scholar 

  11. Holloway GP, Benton CR, Mullen KL, Yoshida Y, Snook LA, Han XX, Glatz JF, Luiken JJ, Lally J, Dyck DJ, Bonen A (2009) In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol storage despite an increase in mitochondrial palmitate oxidation. Am J Physiol Endocrinol Metab 296:E738–E747

    Article  CAS  PubMed  Google Scholar 

  12. Jing E, Emanuelli B, Hirschey MD, Boucher J, Lee KY, Lombard D, Verdin EM, Kahn CR (2011) Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci U S A 108:14608–14613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, Fang F, Chang Y (2010) Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 5:e11707

    Article  PubMed Central  PubMed  Google Scholar 

  14. Koonen DP, Sung MM, Kao CK, Dolinsky VW, Koves TR, Ilkayeva O, Jacobs RL, Vance DE, Light PE, Muoio DM, Febbraio M, Dyck JR (2010) Alterations in skeletal muscle fatty acid handling predisposes middle-aged mice to diet-induced insulin resistance. Diabetes 59:1366–1375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Labbe A, Garand C, Cogger VC, Paquet ER, Desbiens M, Le Couteur DG, Lebel M (2011) Resveratrol improves insulin resistance hyperglycemia and hepatosteatosis but not hypertriglyceridemia, inflammation, and life span in a mouse model for Werner syndrome. J Gerontol A Biol Sci Med Sci 66:264–278

    Article  PubMed  Google Scholar 

  16. Menzies KJ, Hood DA (2012) The role of SirT1 in muscle mitochondrial turnover. Mitochondrion 12:5–13

    Article  CAS  PubMed  Google Scholar 

  17. Newman JC, He W, Verdin E (2012) Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease. J Biol Chem 287:42436–42443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Nielsen J, Mogensen M, Vind BF, Sahlin K, Hojlund K, Schroder HD, Ortenblad N (2010) Increased subsarcolemmal lipids in type 2 diabetes: effect of training on localization of lipids, mitochondria, and glycogen in sedentary human skeletal muscle. Am J Physiol Endocrinol Metab 298:E706–E713

    Article  CAS  PubMed  Google Scholar 

  19. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  20. Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148:421–433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Penumetcha M, Song M, Merchant N, Parthasarathy S (2012) Pretreatment with n-6 PUFA protects against subsequent high fat diet induced atherosclerosis—potential role of oxidative stress-induced antioxidant defense. Atherosclerosis 220:53–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS, Hubbard BP, Varela AT, Davis JG, Varamini B, Hafner A, Moaddel R, Rolo AP, Coppari R, Palmeira CM, de Cabo R, Baur JA, Sinclair DA (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15:675–690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Robb EL, Stuart JA (2011) Resveratrol interacts with estrogen receptor-beta to inhibit cell replicative growth and enhance stress resistance by upregulating mitochondrial superoxide dismutase. Free Radic Biol Med 50:821–831

    Article  CAS  PubMed  Google Scholar 

  24. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  CAS  PubMed  Google Scholar 

  25. Tarry-Adkins JL, Martin-Gronert MS, Fernandez-Twinn DS, Hargreaves I, Alfaradhi MZ, Land JM, Aiken CE, Ozanne SE (2013) Poor maternal nutrition followed by accelerated postnatal growth leads to alterations in DNA damage and repair, oxidative and nitrosative stress, and oxidative defense capacity in rat heart. FASEB J 27:379–390

    Article  CAS  PubMed  Google Scholar 

  26. van Loon LJ, Koopman R, Manders R, van der Weegen W, van Kranenburg GP, Keizer HA (2004) Intramyocellular lipid content in type 2 diabetes patients compared with overweight sedentary men and highly trained endurance athletes. Am J Physiol Endocrinol Metab 287:E558–E565

    Article  PubMed  Google Scholar 

  27. Wright LE, Brandon AE, Hoy AJ, Forsberg GB, Lelliott CJ, Reznick J, Lofgren L, Oscarsson J, Stromstedt M, Cooney GJ, Turner N (2011) Amelioration of lipid-induced insulin resistance in rat skeletal muscle by overexpression of Pgc-1beta involves reductions in long-chain acyl-CoA levels and oxidative stress. Diabetologia 54:1417–1426

    Article  CAS  PubMed  Google Scholar 

  28. Xu Y, Nie L, Yin YG, Tang JL, Zhou JY, Li DD, Zhou SW (2012) Resveratrol protects against hyperglycemia-induced oxidative damage to mitochondria by activating SIRT1 in rat mesangial cells. Toxicol Appl Pharmacol 259:395–401

    Article  CAS  PubMed  Google Scholar 

  29. Yuzefovych LV, Musiyenko SI, Wilson GL, Rachek LI (2013) Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLoS One 8:e54059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China grant 81300656.

Conflict of interest

The authors declare that they have no conflict of interest regarding this manuscript.

Author contributions

All authors participated in the design, interpretation of the studies and analysis of the data, and review of the manuscript; H-HZ, JZ, XH, and WK conducted the experiments; L-LC, H-HZ, and QG wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Lulu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haohao, Z., Guijun, Q., Juan, Z. et al. Resveratrol improves high-fat diet induced insulin resistance by rebalancing subsarcolemmal mitochondrial oxidation and antioxidantion. J Physiol Biochem 71, 121–131 (2015). https://doi.org/10.1007/s13105-015-0392-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-015-0392-1

Keywords

Navigation