Skip to main content

Advertisement

Log in

Deregulation of NF-кB–miR-146a negative feedback loop may be involved in the pathogenesis of diabetic neuropathy

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The current study was designed to explore whether microRNA-146a and its adapter proteins (tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and interleukin-1 receptor-associated kinase 1 (IRAK1)) are involved in the pathogenesis of diabetes neuropathy. Twelve male Sprague Dawley rats were randomized into control and diabetic groups (n = 6). Diabetes was induced by a single-dose injection of nicotinamide (110 mg/kg; i.p.), 15 min before injection of streptozotocin (50 mg/kg; i.p.) in 12-h-fasted rats. Diabetic neuropathy was evaluated by hot plate and tail emersion tests, 2 months after the injection of streptozotocin. The gene expression level of microRNA-146a (miR-146a), IRAK1, TRAF6, and nuclear factor kappa B (NF-κB) was measured in the sciatic nerve of rats using the real time-PCR method. Moreover, the activity of NF-κB and the concentration of pro-inflammatory cytokines were determined by the ELISA method. In comparison with the control group, a threefold increase in the expression of miR-146a and NF-κB, and a twofold decrease in the expression of TRAF6 were observed in the sciatic nerve of diabetic rats. Furthermore, the NF-κB activity and the concentration of TNF-α, interleukin 6 (IL-6), and interleukin 1β (IL-1β) in the sciatic nerve of diabetic rats were higher than in those of control counterparts. These results suggest that a defect in the NF-кB–miR-146a negative feedback loop may be involved in the pathogenesis of diabetic neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alipour MR, Khamaneh AM, Yousefzadeh N, Mohammad-nejad D, Soufi FG (2013) Upregulation of microRNA-146a was not accompanied by downregulation of pro-inflammatory markers in diabetic kidney. Mol Biol Rep 40:6477–6483

    Article  CAS  PubMed  Google Scholar 

  2. Balasubramanyam M, Aravind S, Gokulakrishnan K, Prabu P, Sathishkumar C, Ranjani H, Mohan V (2011) Impaired miR-146a expression links subclinical inflammation and insulin resistance in type 2 diabetes. Mol Cell Biochem 351:197–205

    Article  CAS  PubMed  Google Scholar 

  3. Baltimore D, Boldin MP, O'Connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–945

    Article  CAS  PubMed  Google Scholar 

  4. Boldin M, Taganov K, Rao D, Yang L, Zhao J, Kalwani M, Garcia-Flores Y, Luong M, Devrekanli A, Xu J, Sun G, Tay J, Linsley PS, Baltimore D (2011) MiR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med 208:1189–1201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  PubMed  Google Scholar 

  6. Cheng H, Sivachandran N, Lau A, Boudreau E, Zhao J, Baltimore D, Delgado-Olguin P, Cybulsky MI, Fish JE (2013) MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol Med 5:949–966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Chopra K, Tiwari V, Arora V, Kuhad A (2010) Sesamol suppresses neuro-inflammatory cascade in experimental model of diabetic neuropathy. J Pain 11:950–957

    Article  CAS  PubMed  Google Scholar 

  8. Edwards JL, Vincent AM, Cheng HT, Feldman EL (2008) Diabetic neuropathy: mechanisms to management. Pharmacol Ther 120:1–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Feng B, Chen S, McArthur K, Wu Y, Sen S, Ding Q, Feldman RD, Chakrabarti S (2011) miR-146a-Mediated extracellular matrix protein production in chronic diabetes complications. Diabetes 60:2975–2984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93:137–188

    Article  CAS  PubMed  Google Scholar 

  11. Ganesh Yerra V, Negi G, Sharma SS, Kumar A (2013) Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-kappa B pathways in diabetic neuropathy. Redox Biol 1:394–397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Granic I, Dolga AM, Nijholt IM, van Dijk G, Eisel UL (2009) Inflammation and NF-kappa B in Alzheimer’s disease and diabetes. J Alzheimers Dis 16:809–821

    PubMed  Google Scholar 

  13. Kaltschmidt B, Kaltschmidt C (2009) NF-kappaB in the nervous system. Cold Spring Harb Perspect Biol 1:a001271

    Article  PubMed Central  PubMed  Google Scholar 

  14. Kamboj SS, Vasishta RK, Sandhir R (2010) N-acetylcysteine inhibits hyperglycemia-induced oxidative stress and apoptosis markers in diabetic neuropathy. J Neurochem 112:77–91

    Article  CAS  PubMed  Google Scholar 

  15. Kumar A, Sharma SS (2010) NF-kappa B inhibitory action of resveratrol: a probable mechanism of neuroprotection in experimental diabetic neuropathy. Biochem Biophys Res Commun 394:360–355

    Article  CAS  PubMed  Google Scholar 

  16. Lovis P, Roggli E, Laybutt DR, Gattesco S, Yang JY, Widmann C, Abderrahmani A, Regazzi R (2008) Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57:2728–2736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ma X, Becker Buscaglia LE, Barker JR, Li Y (2011) MicroRNAs in NF-kappa B signaling. J Mol Cell Biol 3:159–166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Mann DL (2011) The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circ Res 108:1133–1145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Mattson MP, Camandola S (2001) NF-kappaB in neuronal plasticity and neurodegenerative disorders. J Clin Invest 107:247–254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Meffert MK, Baltimore D (2005) Physiological functions for brain NF-kappa B. Trends Neurosci 28:37–43

    Article  CAS  PubMed  Google Scholar 

  21. Negi G, Kumar A, Sharma SS (2011) Nrf2 and NF-kappaB modulation by sulforaphane counteracts multiple manifestations of diabetic neuropathy in rats and high glucose-induced changes. Curr Neurovasc Res 8:294–304

    Article  CAS  PubMed  Google Scholar 

  22. Palomer X, Capdevila-Busquets E, Alvarez-Guardia D, Barroso E, Pallàs M, Camins A, Davidson MM, Planavila A, Villarroya F, Vázquez-Carrera M (2013) Resveratrol induces nuclear factor-κB activity in human cardiac cells. Int J Cardiol 167:2507–2516

    Article  PubMed  Google Scholar 

  23. Palsamy P, Subramanian S (2008) Resveratrol, a natural phytoalexin, normalizes hyperglycemia in streptozotocin-nicotinamide induced experimental diabetic rats. Biomed Pharmacother 62:598–605

    Article  CAS  PubMed  Google Scholar 

  24. Palsamy P, Subramanian S (2010) Ameliorative potential of resveratrol on proinflammatory cytokines, hyperglycemia mediated oxidative stress, and pancreatic β-cell dysfunction in streptozotocin-nicotinamide-induced diabetic rats. J Cell Physiol 224:423–432

    Article  CAS  PubMed  Google Scholar 

  25. Patel S, Santani D (2009) Role of NF-kappa B in the pathogenesis of diabetes and its associated complications. Pharmacol Rep 61:595–603

    Article  CAS  PubMed  Google Scholar 

  26. Quinn S, O’Neill L (2011) A trio of microRNAs that control Toll-like receptor signaling. Int Immunol 23:421–425

    Article  CAS  PubMed  Google Scholar 

  27. Rains JL, Jain SK (2011) Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 50:567–575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Ramesh B, Pugalendi KV (2006) Antihyperglycemic effect of umbelliferone in streptozotocin-diabetic rats. J Med Food 9:562–566

    Article  CAS  PubMed  Google Scholar 

  29. Ramkaran P, Khan S, Phulukdaree A, Moodley D, Chuturgoon AA (2014) miR-146a polymorphism influences levels of miR-146a, IRAK-1, and TRAF-6 in young patients with coronary artery disease. Cell Biochem Biophys 68:259–266

    Article  CAS  PubMed  Google Scholar 

  30. Roggli E, Britan A, Gattesco S, Lin-Marq N, Abderrahmani A, Meda P, Regazzi R (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59:978–986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Roghani M, Baluchnejadmojarad T (2010) Mechanisms underlying vascular effect of chronic resveratrol in streptozotocin-diabetic rats. Phytother Res 24:S148–S154

    Article  PubMed  Google Scholar 

  32. Rossetti L, DeFronzo RA, Gherzi R, Stein P, Andraghetti G, Falzetti G, Shulman GI, Klein-Robbenhaar E, Cordera R (1990) Effect of metformin treatment on insulin action in diabetic rats: in vivo and in vitro correlations. Metabolism 39:425–435

    Article  CAS  PubMed  Google Scholar 

  33. Sanz AB, Sanchez-Nino MD, Ramos AM, Moreno JA, Santamaria B, Ruiz-Ortega M (2010) NF-kappaB in renal inflammation. J Am Soc Nephrol 21:1254–1262

    Article  CAS  PubMed  Google Scholar 

  34. Shanmugam KR, Mallikarjuna K, Reddy KS (2011) Effect of alcohol on blood glucose and antioxidant enzymes in the liver and kidney of diabetic rats. Indian J Pharmacol 43:330–335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Singh CK, Kumar A, Hitchcock DB, Fan D, Goodwin R, LaVoie HA, Nagarkatti P, DiPette DJ, Singh US (2011) Resveratrol prevents embryonic oxidative stress and apoptosis associated with diabetic embryopathy and improves glucose and lipid profile of diabetic dam. Mol Nutr Food Res 55:1186–1196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Soufi FG, Mohammad-nejad D, Ahmadieh H (2012) Resveratrol improves diabetic retinopathy possibly through oxidative stress - nuclear factor kB - apoptosis pathway. Pharmacol Rep 64:1505–1514

    Article  CAS  PubMed  Google Scholar 

  37. Vaz C, Mer AS, Bhattacharya A, Ramaswamy R (2011) MicroRNAs modulate the dynamics of the NF-kB signaling pathway. PLoS One 6:e27774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Wang L, Chopp M, Szalad A, Zhang Y, Wang X, Zhang RL, Liu XS, Jia L, Zhang ZG (2014) The role of miR-146a in dorsal root ganglia neurons of experimental diabetic peripheral neuropathy. Neuroscience 259:155–163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Wohaieb SA, Godin DV (1987) Alterations in free radical tissue-defense mechanisms in streptozocin-induced diabetes in rat. Effects of insulin treatment. Diabetes 36:1014–1018

    Article  CAS  PubMed  Google Scholar 

  40. Zhao JL, Rao DS, O'Connell RM, Garcia-Flores Y, Baltimore D (2013) MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice. Elife 2:e00537

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The grant of this study was supported by Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

Conflict of interest

The authors have declared that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Ghadiri Soufi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefzadeh, N., Alipour, M.R. & Ghadiri Soufi, F. Deregulation of NF-кB–miR-146a negative feedback loop may be involved in the pathogenesis of diabetic neuropathy. J Physiol Biochem 71, 51–58 (2015). https://doi.org/10.1007/s13105-014-0378-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-014-0378-4

Keywords

Navigation