Skip to main content

Advertisement

Log in

Cellular mechanisms in intermittent hypoxia-induced cardiac damage in vivo

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH) during sleep, is increasingly recognized as an independent risk factor of cardiovascular diseases. OSA is associated with changes in the levels of circulating oxidative stress/inflammatory markers and dyslipidemia, supporting their mediating roles in cardiovascular pathogenesis. Our aims were to investigate the effect of IH on heart tissue using an IH-exposed rat model and to explore the potential mechanisms involved in the occurrence of cardiac damage. Male Sprague–Dawley rats were exposed to IH and intermittent normoxia as control and sacrificed after 2 or 4 weeks. IH for 4 weeks caused elevation in serum malondialdehyde and cytokine-induced neutrophil chemoattractant-1 and reduction in serum adiponectin levels. In contrast, cardiac oxidative stress and pro-inflammatory markers were suppressed while cardiac adiponectin and cholesterol levels were elevated after IH exposure for 4 weeks. In parallel, there was an increase in apoptosis in the heart of IH-exposed rats, demonstrated by elevations of Bax and cleaved caspase-3 protein and TUNEL staining. Cardiac damage was further evident with decreased arterial vessel and capillary densities, increased cardiac fibrosis, and the loss of troponin I. Our data demonstrated that IH exposure paradoxically caused systemic oxidative and inflammatory responses and cardioprotective responses, i.e., anti-oxidative and anti-inflammatory responses. Despite such a local compensatory protective mechanism, cardiac damage was observed that might be due to IH-induced cholesterol accumulation in the heart and caspase-dependent apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

CO:

Carbon monoxide

CVDs:

Cardiovascular diseases

CPAP:

Continuous positive airway pressure

Nrf2:

Erythroid 2-related factor

HO-1:

Heme oxygenase-1

HDL:

High-density lipoprotein

IL-6:

Interleukin-6

IH:

Intermittent hypoxia

Keap-1:

Kelch-like ECH-associated protein

LDL:

Low-density lipoprotein

MDA:

Malondialdehyde

ROS:

Reactive oxygen species

SMA:

Smooth muscle actin

TNF-α:

Tumor necrosis factor-α

vWF:

von Willebrand factor

References

  1. Arnardottir ES, Mackiewicz M, Gislason T, Teff K, Pack AI (2009) Molecular signatures of obstructive sleep apnea in adults: a review and perspective. Sleep 32:447–470

    PubMed Central  PubMed  Google Scholar 

  2. Baldi A, Abbate A, Bussani R, Patti G, Melfi R, Angelini A, Dobrina A, Rossiello R, Silvestri F, Baldi F, Di Sciascio G (2002) Apoptosis and post-infarction left ventricular remodeling. J Mol Cell Cardiol 34:165–174

    Article  CAS  PubMed  Google Scholar 

  3. Burckhardt IC, Gozal D, Dayyat E, Cheng Y, Li RC, Goldbart AD, Row BW (2008) Green tea catechin polyphenols attenuate behavioral and oxidative responses to intermittent hypoxia. Am J Respir Crit Care Med 177:1135–1141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Carpagnano GE, Kharitonov SA, Resta O, Foschino-Barbaro MP, Gramiccioni E, Barnes PJ (2002) Increased 8-isoprostane and interleukin-6 in breath condensate of obstructive sleep apnea patients. Chest 122:1162–1167

    Article  CAS  PubMed  Google Scholar 

  5. Chen L, Einbinder E, Zhang Q, Hasday J, Balke CW, Scharf SM (2005) Oxidative stress and left ventricular function with chronic intermittent hypoxia in rats. Am J Respir Crit Care Med 172:915–920

    Article  PubMed  Google Scholar 

  6. Chin K, Ohi M, Shimizu K, Nakamura T, Miyaoka F, Mishima M (2001) Increase in bilirubin levels of patients with obstructive sleep apnea in the morning—a possible explanation of induced heme oxygenase-1. Sleep 24:218–223

    CAS  PubMed  Google Scholar 

  7. Ciftci TU, Kokturk O, Bukan N, Bilgihan A (2004) The relationship between serum cytokine levels with obesity and obstructive sleep apnea syndrome. Cytokine 28:87–91

    Article  CAS  PubMed  Google Scholar 

  8. El Solh AA, Akinnusi ME, Baddoura FH, Mankowski CR (2007) Endothelial cell apoptosis in obstructive sleep apnea: a link to endothelial dysfunction. Am J Respir Crit Care Med 175:1186–1191

    Article  PubMed  Google Scholar 

  9. Greenberg H, Ye X, Wilson D, Htoo AK, Hendersen T, Liu SF (2006) Chronic intermittent hypoxia activates nuclear factor-[kappa]b in cardiovascular tissues in vivo. Biochem Biophys Res Commun 343:591–596

    Article  CAS  PubMed  Google Scholar 

  10. Imagawa S, Yamaguchi Y, Ogawa K, Obara N, Suzuki N, Yamamoto M, Nagasawa T (2004) Interleukin-6 and tumor necrosis factor-a in patients with obstructive sleep apnea-hypopnea syndrome. Respiration 71:24–29

    Article  CAS  PubMed  Google Scholar 

  11. Kim J, Cha Y-N, Surh Y-J (2009) A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res Fundam Mol Mech Mutagen 690:12–23

    Article  Google Scholar 

  12. Kobayashi M, Miyazawa N, Takeno M, Murakami S, Kirino Y, Okouchi A, Kaneko T, Ishigatsubo Y (2008) Circulating carbon monoxide level is elevated after sleep in patients with obstructive sleep apnea. Chest 134:904–910

    Article  CAS  PubMed  Google Scholar 

  13. Kockx MM, De Meyer GRY, Muhring J, Jacob W, Bult H, Herman AG (1998) Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation 97:2307–2315

    Article  CAS  PubMed  Google Scholar 

  14. Lam JCM, Ip MSM (2009) Obstructive sleep apnea and the metabolic syndrome. Expert Rev Respir Med 3:177–186

    Article  PubMed  Google Scholar 

  15. Lavie L (2009) Oxidative stress—a unifying paradigm in obstructive sleep apnea and comorbidities. Prog Cardiovasc Dis 51:303–312

    Article  CAS  PubMed  Google Scholar 

  16. Lee W, Xu M, Li Y, Gu Y, Chen J, Wong D, Fung PCW, Shen J (2011) Free cholesterol accumulation impairs antioxidant activities and aggravates apoptotic cell death in menadione-induced oxidative injury. Arch Biochem Biophys 514:57–67

    Article  CAS  PubMed  Google Scholar 

  17. Li J, Savransky V, Nanayakkara A, Smith PL, O’Donnell CP, Polotsky VY (2007) Hyperlipidemia and lipid peroxidation are dependent on the severity of chronic intermittent hypoxia. J Appl Physiol 102:557–563

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Thorne LN, Punjabi NM, Sun C-K, Schwartz AR, Smith PL, Marino RL, Rodriguez A, Hubbard WC, O’Donnell CP, Polotsky VY (2005) Intermittent hypoxia induces hyperlipidemia in lean mice. Circ Res 97:698–706

    Article  CAS  PubMed  Google Scholar 

  19. Maines M (1988) Hemeoxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J 2:2557–2568

    CAS  PubMed  Google Scholar 

  20. Masini E, Vannacci A, Marzocca C, Pierpaoli S, Giannini L, Fantappie O, Mazzanti R, Mannaioni PF (2003) Heme oxygenase-1 and the ischemia-reperfusion injury in the rat heart. Exp Biol Med 228:546–549

    CAS  Google Scholar 

  21. Nakagawa Y, Kishida K, Kihara S, Sonoda M, Hirata A, Yasui A, Nishizawa H, Nakamura T, Yoshida R, Shimomura I, Funahashi T (2008) Nocturnal reduction in circulating adiponectin concentrations related to hypoxic stress in severe obstructive sleep apnea-hypopnea syndrome. Am J Physiol Endocrinol Metab 294:E778–E784

    Article  CAS  PubMed  Google Scholar 

  22. Newman AB, Nieto FJ, Guidry U, Lind BK, Redline S, Shahar E, Pickering TG, Quan for the Sleep Heart Health Study Research Group SF (2001) Relation of sleep-disordered breathing to cardiovascular disease risk factors. Am J Epidemiol 154:50–59

    Article  CAS  PubMed  Google Scholar 

  23. Nishida K, Otsu K (2008) Cell death in heart failure. Circ J 72:A17–A21

    Article  PubMed  Google Scholar 

  24. Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, Davis RJ, Flavell RA, Choi AMK (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6:422–428

    Article  CAS  PubMed  Google Scholar 

  25. Pekkanen J, Linn S, Heiss G, Suchindran CM, Leon A, Rifkind BM, Tyroler HA (1990) Ten-year mortality from cardiovascular disease in relation to cholesterol level among men with and without preexisting cardiovascular disease. N Engl J Med 322:1700–1707

    Article  CAS  PubMed  Google Scholar 

  26. Peterson SJ, Frishman WH (2009) Targeting hemeoxygenase: therapeutic implications for diseases of the cardiovascular system. Cardiol Rev 17:99–111

    Article  PubMed  Google Scholar 

  27. Ramirez TA, Jourdan-Le Saux C, Joy A, Zhang J, Dai Q, Mifflin S, Lindsey ML (2012) Chronic and intermittent hypoxia differentially regulate left ventricular inflammatory and extracellular matrix responses. Hypertens Res 35:811–818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Robinson GV, Pepperell JCT, Segal HC, Davies RJO, Stradling JR (2004) Circulating cardiovascular risk factors in obstructive sleep apnoea: data from randomised controlled trials. Thorax 59:777–782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ryan S, Taylor CT, McNicholas WT (2006) Predictors of elevated nuclear factor-kb-dependent genes in obstructive sleep apnea syndrome. Am J Respir Crit Care Med 174:824–830

    Article  CAS  PubMed  Google Scholar 

  30. Selim B, Won C, Yaggi HK (2010) Cardiovascular consequences of sleep apnea. Clin Chest Med 31:203–220

    Article  PubMed  Google Scholar 

  31. Shamsuzzaman ASM, Gersh BJ, Somers VK (2003) Obstructive sleep apnea: implications for cardiac and vascular disease. JAMA 290:1906–1914

    Article  CAS  PubMed  Google Scholar 

  32. Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, Daniels S, Floras JS, Hunt CE, Olson LJ, Pickering TG, Russell R, Woo M, Young T (2008) Sleep apnea and cardiovascular disease. Circulation 118:1080–1111

    Article  PubMed  Google Scholar 

  33. Tabas I (2002) Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Invest 110:905–911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Ungvari ZI, Bailey-Downs L, Gautam T, Jimenez R, Losonczy G, Zhang C, Ballabh P, Recchia FA, Wilkerson DC, Sonntag WE, Pearson KJ, de Cabo R, Csiszar A (2011) Adaptive induction ofNf-E2-related factor-2-driven antioxidant genes in endothelial cells in response to hyperglycemia. Am J Physiol Heart C 300:H1133–H1140

    Article  CAS  Google Scholar 

  35. Uno K, Nicholls SJ (2010) Biomarkers of inflammation and oxidative stress in atherosclerosis. Biomark Med 4:361–373

    Article  CAS  PubMed  Google Scholar 

  36. Vatansever E, Surmen-Gur E, Ursavas A, Karadag M (2011) Obstructive sleep apnea causes oxidative damage to plasma lipids and proteins and decreases adiponectin levels. Sleep Breath 15:275–282

    Article  PubMed  Google Scholar 

  37. Vgontzas AN, Papanicolaou DA, Bixler EO, Kales A, Tyson K, Chrousos GP (1997) Elevation of plasma cytokines in disorders of excessive daytime sleepiness: role of sleep disturbance and obesity. J Clin Endocrinol Metab 82:1313–1316

    Article  CAS  PubMed  Google Scholar 

  38. Wang Z, Si L-Y (2013) Hypoxia-inducible factor-1a and vascular endothelial growth factor in the cardioprotective effects of intermittent hypoxia in rats. Ups J Med Sci 118:65–74

    Article  PubMed Central  PubMed  Google Scholar 

  39. Wolf J, Lewicka J, Narkiewicz K (2007) Obstructive sleep apnea: an update on mechanisms and cardiovascular consequences. Nutr Metab Cardiovasc Dis 17:233–240

    Article  PubMed  Google Scholar 

  40. Yao PM, Tabas I (2001) Free cholesterol loading of macrophages is associated with widespread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway. J Biol Chem 276:42468–42476

    Article  CAS  PubMed  Google Scholar 

  41. Yet SF, Tian R, Layne MD, Wang ZY, Maemura K, Solovyeva M, Ith B, Melo LG, Zhang L, Ingwall JS, Dzau VJ, Lee ME, Perrella MA (2001) Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice. Circ Res 89:168–173

    Article  CAS  PubMed  Google Scholar 

  42. Zhang XL, Yin KS, Wang H, Su S (2006) Serum adiponectin levels in adult male patients with obstructive sleep apnea hypopnea syndrome. Respiration 73:73–77

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Hong Kong Research Grant Council General Research Fund (RGC GRF) 2008–2009 (HKU 771908M).

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith C. W. Mak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Q., Yeung, S.C., Ip, M.S.M. et al. Cellular mechanisms in intermittent hypoxia-induced cardiac damage in vivo. J Physiol Biochem 70, 201–213 (2014). https://doi.org/10.1007/s13105-013-0294-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-013-0294-z

Keywords

Navigation