Skip to main content

Advertisement

Log in

Anti-inflammatory effects of Retama monosperma in acute ulcerative colitis in rats

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn’s disease, is a chronic intestinal disorder resultant from a dysfunctional epithelial, innate and adaptive immune response to intestinal microorganisms. Current IBD treatment presents limitations in both efficacy and safety that stimulated for new active drugs. Retama spp. have been traditionally used in the Mediterranean region in treatment of pain and inflammation. In this study, the anti-inflammatory and protective properties of a standardised aqueous extract from Retama monosperma (RmE) was evaluated in vivo, by intra-colonic administration of trinitrobenzene sulfonic acid (TNBS) in rats as a Crohn’s disease model. The qualitative and quantitative analysis of flavonoids from RmE was performed by high-performance liquid chromatography–tandem mass spectrometry. Oral administration of RmE diminished the severity and extension of the intestinal injuries induced by TNBS. In addition, RmE increased mucus production in goblet cells in colon mucosa, decreased neutrophil infiltration and cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) overexpression. Similarly, RmE significantly reduced p38 mitogen-activated protein kinase activation, preventing the inhibitory protein IκB degradation in colonic mucosa. RmE anti-inflammatory effects seem to be related to impairment of neutrophil function and COX-2 and iNOS down-regulation possibly through p38 MAPK and nuclear transcription factor kappa B signalling pathways. These results suggest that RmE might contribute to the development of new pharmaceutical products for inflammatory bowel disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Belmokhtar Z, Kaid-Harche M (2012) Evaluation of genetic diversity in three species of Retama genus: R. monosperma (L) Boiss, R. raetam (Forssk) Webb and R. sphaerocarpa (L) Boiss. (Fabaceae) based on SDS-PAGE. Curr Res J Biol Sci 4:202–205

    Google Scholar 

  2. Benitez Cruz G (2007) El uso de las plantas a través de la cultura tradicional Lojeña. Fundación Ibn al-Jatib de Estudios de Cooperación. Granada, Cultural

    Google Scholar 

  3. Bobin-Dubigeon C, Collin X, Grimaud N, Robert JM, Le Baut G, Petit JY (2001) Effects of tumour necrosis factor-alpha synthesis inhibitors on rat trinitrobenzene sulphonic acid-induced chronic colitis. Eur J Pharmacol 9:103–110

    Article  Google Scholar 

  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 7:248–254

    Article  Google Scholar 

  5. Bremner P, Rivera D, Calzado MA, Obón C, Inocencio C, Beckwith C, Fiebich BL, Muñoz E, Heinrich M (2009) Assessing medicinal plants from South-Eastern Spain for potential anti-inflammatory effects targeting nuclear factor-Kappa B and other pro-inflammatory mediators. J Ethnopharmacol 115:295–305

    Article  Google Scholar 

  6. Brenna O, Furnes MW, Drozdov I, Van Beelen Granlund A, Flatberg A, Sandvik AK, Zwiggelaar RT, Mårvik R, Nordrum IS, Kidd M, Gustafsson BI (2013) Relevance of TNBS-Colitis in rats: a methodological study with endoscopic, historical and transcriptomic characterization and correlation to IBD. PLoS One 8:e54543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Coskun ZK, Kerem M, Gurbuz N, Omeroglu S, Pasaoglu H, Demirtas C, Lortlar N, Salman B, Pasaoglu OT, Turgut HB (2011) The study of biochemical and histopathological effects of spirulina in rats with TNBS-induced colitis. Bratisl Med J 112:235–243

    CAS  Google Scholar 

  8. Cruz T, Galvez J, Ocete MA, Crespo ME, Sanchez de Medina F, Zarzuelo A (1998) Oral administration of rutoside can ameliorate inflammatory bowel disease in rats. Life Sci 62:687–695

    Article  CAS  PubMed  Google Scholar 

  9. Danese S, Fiocchi C (2006) Etiopathogenesis of inflammatory bowel diseases. World J Gastroenterol 14:4807–4812

    Google Scholar 

  10. Dong C, Davis RJ, Flavell RA (2002) MAP kinases in the immune response. Annu Rev Immunol 20:55–72

    Article  CAS  PubMed  Google Scholar 

  11. El-Toumy SA, Farrag AH, Ellithey MM, Korien KM (2011) Effect of plant derived-phenolic extracts on antioxidant enzyme activity and mucosal damage caused by indomethacin in rats. J Pharm Res 4:189–192

    CAS  Google Scholar 

  12. El-Shazly A, Ateya, AM, Witte L, Wink M. 1996. Quinolizidine alkaloid profiles of Retama raetam, R. sphaerocarpa and R. monosperma. Z. Naturforsch 51c: 301–308.

  13. Feng YJ, Li YY (2011) The role of p38 mitogen-activated protein kinase in the pathogenesis of inflammatory bowel disease. J Dig Dis 12:327–332

    Article  CAS  PubMed  Google Scholar 

  14. Grisham MB, Benoit JN, Granger DN (1990) Assessment of leukocyte involvement during ischemia and reperfusion of intestine. Methods Enzymol 186:729–742

    Article  CAS  PubMed  Google Scholar 

  15. Hommes D, van den Blink B, Plasse T, Bartelsman J, Xu C, Macpherson B, Tytgat G, Peppelenbosch M, Van Deventer S (2002) Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn’s disease. Gastroenterology 122:7–14

    Article  CAS  PubMed  Google Scholar 

  16. Karrasch T, Kim JS, Jang BI, Jobin C (2007) The flavonoid luteolin worsens chemical-induced colitis in NF-κBEGFP transgenic mice through blockade of NF-κB-dependent protective molecules. PLoS ONE 2:e596

    Article  PubMed Central  PubMed  Google Scholar 

  17. Kwon KH, Murakami A, Tanaka T, Ohigashi H (2005) Dietary rutin, but not its aglycone quercetin, ameliorates dextran sulfate sodium-induced experimental colitis in mice: attenuation of pro-inflammatory gene expression. Biochem Pharmacol 69:395–406

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Li Z, Mo BQ (2006) Effects of ERK5 MAPK signaling transduction pathway on the inhibition of genistein to breast cancer cells. J Hyg Res 35:184–186

    CAS  Google Scholar 

  19. López-Lázaro M, Martín-Cordero C, Ayuso MJ (1999) Flavonoids of Retama sphaerocarpa. Planta Med 65:777–778

    Article  PubMed  Google Scholar 

  20. Makkink MK, Schwerbrock NM, Mähler M, Boshuizen JA, Renes IB, Cornberg M, Hedrich HJ, Einerhand AW, Büller HA, Wagner S, Enss ML, Dekker J (2002) Fate of goblet cells in experimental colitis. Dig Dis Sci 47:2286–2297

    Article  CAS  PubMed  Google Scholar 

  21. Neuman MG (2007) Immune dysfunction in inflammatory bowel disease. Transl Res 149:173–186

    Article  CAS  PubMed  Google Scholar 

  22. Nishitani Y, Yamamoto K, Yoshida M, Azuma T, Kanazawa K, Hashimoto T, Mizuno M (2013) Intestinal anti-inflammatory activity of luteolin: Role of the aglycone in NF-κB inactivation in macrophages co-cultured with intestinal epithelial cells. Biofactors. doi:10.1002/biof.1091

    PubMed  Google Scholar 

  23. O’Connor PM, Lapointe TK, Beck PL, Buret AG (2010) Mechanisms by which inflammation may increase intestinal cancer risk in inflammatory bowel disease. Inflamm Bowel Dis 16:1411–1420

    Article  PubMed  Google Scholar 

  24. O’Connor WJ, Zenewicz LA, Flavell RA (2010) The dual nature of T(H)17 cells: shifting the focus to function. Nat Immunol 11:471–476

    Article  PubMed  Google Scholar 

  25. Rosillo MA, Sanchez-Hidalgo M, Cárdeno A (2011) Protective effect of ellagic acid, a natural polyphenolic compound, in a murine model of Crohn’s disease. Biochem Pharmacol 82:737–745

    Article  CAS  PubMed  Google Scholar 

  26. Sánchez-Hidalgo M, Martín AR, Villegas I, Alarcón De La Lastra C (2007) Rosiglitazone, a PPARgamma ligand, modulates signal transduction pathways during the development of acute TNBS-induced colitis in rats. Eur J Pharmacol 562:247–258

    Article  PubMed  Google Scholar 

  27. Seibel J, Molzberger AF, Hertrampf T, Laudenbach-Leschowski U, Diel P (2009) Oral treatment with genistein reduces the expression of molecular and biochemical markers of inflammation in a rat model of chronic TNBS-induced colitis. Eur J Nutr 48:213–220

    Article  CAS  PubMed  Google Scholar 

  28. Wullaert A, Bonnet MC, Pasparakis M (2011) NF-κB in the regulation of epithelial homeostasis and inflammation. Cell Res 21:146–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Xagorari A, Papapetropoulos A, Mauromatis A, Economou M, Fotsis T, Roussos C (2001) Luteolin inhibits an endotoxin stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages. J Pharmacol Exp Ther 296:181–187

    CAS  PubMed  Google Scholar 

  30. Xu L, Zhang L, Bertucci AM, Pope RM, Datta SK (2008) Apigenin, a dietary flavonoid, sensitizes human T cells for activation-induced cell death by inhibiting PKB/Akt and NF-kappaB activation pathway. Immunol Lett 121:74–83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Yamada T, Grisham MB (1991) Role of neutrophil-derived oxidants in the pathogenesis of intestinal inflammation. Klin Wochensch 69:988–994

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by grants from Ministerio de Economía y Competitividad (AGL 2011–26949) and Junta de Andalucía (AGR-6609), Spain. The authors gratefully acknowledge the assistance of Center for Technology and Innovation Research, University of Seville (CITIUS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Sánchez-Hidalgo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Mauraza, H., Martín-Cordero, C., Alarcón-de-la-Lastra, C. et al. Anti-inflammatory effects of Retama monosperma in acute ulcerative colitis in rats. J Physiol Biochem 70, 163–172 (2014). https://doi.org/10.1007/s13105-013-0290-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-013-0290-3

Keywords

Navigation