Skip to main content
Log in

Oxytocin activates calcium signaling in rat sensory neurons through a protein kinase C-dependent mechanism

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In addition to its well-known effects on parturition and lactation, oxytocin (OT) plays an important role in modulation of pain and nociceptive transmission. But, the mechanism of this effect is unclear. To address the possible role of OT on pain modulation at the peripheral level, the effects of OT on intracellular calcium levels ([Ca2+]i) in rat dorsal root ganglion (DRG) neurons were investigated by using an in vitro calcium imaging system. DRG neurons were grown in primary culture following enzymatic and mechanical dissociation of ganglia from 1- or 2-day-old neonatal Wistar rats. Using the fura-2-based calcium imaging technique, the effects of OT on [Ca2+]i and role of the protein kinase C (PKC)-mediated pathway in OT effect were assessed. OT caused a significant increase in basal levels of [Ca2+]i after application at the doses of 30 nM (n = 34, p < 0.01), 100 nM (n = 41, p < 0.001) and 300 nM (n = 46, p < 0.001). The stimulatory effect of OT (300 nM) on [Ca2+]i was persistent in Ca2+-free conditions (n = 56, p < 0.01). Chelerythrine chloride, a PKC inhibitor, significantly reduced the OT-induced increase in [Ca2+]i (n = 28, p < 0.001). We demonstrated that OT activates intracellular calcium signaling in cultured rat primary sensory neurons in a dose- and PKC-dependent mechanism. The finding of the role of OT in peripheral pain modification may serve as a novel target for the development of new pharmacological strategies for the management of pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adan RA, Van Leeuwen FW, Sonnemans MA, Brouns M, Hoffman G, Verbalis JG, Burbach P (1995) Rat oxytocin receptor in brain, pituitary, mammary gland, and uterus: partial sequence and immunocytochemical localization. Endocrinology 136:4022–4028

    CAS  PubMed  Google Scholar 

  2. Alcin E, Serhatlioglu S, Ozcan S, Ayar A, Kutlu S, Ozcan M, Kelestimur H (2010) Investigation of the analgesic effects of oxytocin in mice model of diabetic neuropathy. Türkiye Klinikleri J Neurol 5:155–159

    Google Scholar 

  3. Arletti R, Benelli A, Bertolini A (1993) Influence of oxytocin on nociception and morphine antinociception. Neuropeptides 24:125–129

    Article  CAS  PubMed  Google Scholar 

  4. Breton JD, Veinante P, Uhl-Bronner S, Vergnano AM, Freund-Mercier MJ, Schlichter R, Poisbeau P (2008) Oxytocin-induced antinociception in the spinal cord is mediated by a subpopulation of glutamatergic neurons in lamina I-II which amplify GABAergic inhibition. Mol Pain 4:19

    Article  PubMed Central  PubMed  Google Scholar 

  5. Breton JD, Poisbeau P, Darbon P (2009) Antinociceptive action of oxytocin involves inhibition of potassium channel currents in lamina II neurons of the rat spinal cord. Mol Pain 5:63

    Article  PubMed Central  PubMed  Google Scholar 

  6. Brown DC, Perkowski SZ, Shofer F, Amico JA (2001) Effect of centrally administered opioid receptor agonists on CSF and plasma oxytocin concentrations in dogs. Am J Vet Res 62:496–499

    Article  CAS  PubMed  Google Scholar 

  7. Chung JM, Chung K (2002) Importance of hyperexcitability of DRG neurons in neuropathic pain. Pain Pract 2:87–97

    Article  PubMed  Google Scholar 

  8. Condés-Lara M, Rojas-Piloni G, Martínez-Lorenzana G, López-Hidalgo M, Rodríguez-Jiménez J (2009) Hypothalamospinal oxytocinergic antinociception is mediated by GABAergic and opiate neurons that reduce A-delta and C fiber primary afferent excitation of spinal cord cells. Brain Res 1247:38–49

    Article  PubMed  Google Scholar 

  9. Douglas AJ, Johnstone LE, Leng G (2007) Neuroendocrine mechanisms of change in food intake during pregnancy: a potential role for brain oxytocin. Physiol Behav 91:352–365

    Article  CAS  PubMed  Google Scholar 

  10. Ge Y, Lundeberg T, Yu LC (2002) Blockade effect of mu and kappa opioid antagonists on the anti-nociception induced by intra-periaqueductal grey injection of oxytocin in rats. Brain Res 927:204–207

    Article  CAS  PubMed  Google Scholar 

  11. Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation. Physiol Rev 81:629–683

    CAS  PubMed  Google Scholar 

  12. Grewen KM, Light KC, Mechlin B, Girdler SS (2008) Ethnicity is associated with alterations in oxytocin relationships to pain sensitivity in women. Ethn Health 13:219–241

    Article  PubMed  Google Scholar 

  13. Harper AA, Lawson SN (1985) Electrical properties of rat dorsal root ganglion neurones with different peripheral nerve conduction velocities. J Physiol 359:47–63

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Hobo S, Hayashida KI, Eisenach JC (2012) Oxytocin ınhibits the membrane depolarization-ınduced ıncrease in ıntracellular calcium in capsaicin sensitive sensory neurons: a peripheral mechanism of analgesic action. Anesth Analg 114:442–449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Holt-Lunstad J, Birmingham W, Light KC (2011) The influence of depressive symptomatology and perceived stress on plasma and salivary oxytocin before, during and after a support enhancement intervention. Psychoneuroendocrinology 36:1249–1256

    Article  CAS  PubMed  Google Scholar 

  16. Jarvis S, McLean KA, Chirnside J, Deans LA, Calver SK, Molony V, Lawrence AB (1997) Opioid-mediated changes in nociceptive threshold during pregnancy and parturition in the sow. Pain 72:153–159

    Article  CAS  PubMed  Google Scholar 

  17. Jessell TM, Dodd J (1989) Functional chemistry of primary afferent neurons. In: Wall PD, Melzack R (eds) Textbook of pain, 2nd edn. Churchill Livingstone, Edinburgh, pp 82–101

    Google Scholar 

  18. Jesso S, Morlog D, Ross S, Pell MD, Pasternak SH, Mitchell DG, Kertesz A, Finger EC (2011) The effects of oxytocin on social cognition and behaviour in frontotemporal dementia. Brain 134:2493–2501

    Article  PubMed  Google Scholar 

  19. Kang YS, Park JH (2000) Brain uptake and the analgesic effect of oxytocin. Its usefulness as an analgesic agent. Arch Pharm Res 23:391–395

    Article  CAS  PubMed  Google Scholar 

  20. Kimura T, Saji F, Nishimori K, Ogita K, Nakamura H, Koyama M, Murata Y (2003) Molecular regulation of the oxytocin receptor in peripheral organs. J Mol Endocrinol 30(2):109–115

    Article  CAS  PubMed  Google Scholar 

  21. Lambert RC, Dayanithi G, Moos FC, Richard P (1994) A rise in the intracellular Ca2+ concentration of isolated rat supraoptic cells in response to oxytocin. J Physiol 478:275–287

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Molokanova EA, Tamarova ZA (1989) Effect of oxytocin on rat dorsal root ganglia in vitro. Neirofiziologiia 21:420–422

    CAS  PubMed  Google Scholar 

  23. Murphy MR, Seckl JR, Burton S, Checkley SA, Lightman SL (1987) Changes in oxytocin and vasopressin secretion during sexual activity in men. J Clin Endocrinol Metab 65:738–741

    Article  CAS  PubMed  Google Scholar 

  24. Ozcan M, Kutlu S, Alcin E, Yilmaz B, Kelestimur H, Ayar A (2009) Oxytocin provokes increase of free intracellular Ca2+ levels in freshly isolated rat sensory neurons. Physiology 2009, Main Meeting of The Physiological Society Dublin, Ireland, PC 67

  25. Ozcan M, Ayar A, Alcin E, Ozcan S, Kutlu S (2010) Effects of levobupivacaine and bupivacaine on intracellular calcium signaling in cultured rat dorsal root ganglion neurons. J Recept and Signal Transduct Res 30:115–120

    Article  CAS  Google Scholar 

  26. Ozcan M, Ayar A, Serhatlioglu I, Alcin E, Sahin Z, Kelestimur H (2010) Orexins activates protein kinase C-mediated Ca2+ signaling in isolated rat primary sensory neurons. Physiol Res 59:255–262

    CAS  PubMed  Google Scholar 

  27. Pedersen CA, Vadlamudi SV, Boccia ML, Amico JA (2006) Maternal behavior deficits in nulliparous oxytocin knockout mice. Genes Brain Behav 5:274–281

    Article  CAS  PubMed  Google Scholar 

  28. Reeta K, Mediratta PK, Rathi N, Jain H, Chugh C, Sharma KK (2006) Role of kappa- and delta-opioid receptors in the antinociceptive effect of oxytocin in formalin-induced pain response in mice. Regul Pept 135:85–90

    Article  CAS  PubMed  Google Scholar 

  29. Rojas-Piloni G, López-Hidalgo M, Martínez-Lorenzana G, Rodríguez-Jiménez J, Condés-Lara M (2007) GABA-mediated oxytocinergic inhibition in dorsal horn neurons by hypothalamic paraventricular nucleus stimulation. Brain Res 1137:69–77

    Article  CAS  PubMed  Google Scholar 

  30. Ross HE, Young LJ (2009) Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front Neuroendocrinol 30:534–547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Tamarova ZA (1988) Effect of vasopressin and oxytocin on the dorsal root potentials of the isolated perfused spinal cord in rat pups. Neirofiziologiia 20:757–763

    CAS  PubMed  Google Scholar 

  32. Tan ZJ, Wei JB, Li ZW, Shao M, Hu QS, Peng BW (2000) Modulation of GABA-activated currents by oxytocin in rat dorsal root ganglion neurons. Acta Physiol Sin 52:381–384

    CAS  Google Scholar 

  33. Vyklický L, Knotková-Urbancovä H (1996) Can sensory neurones in culture serve as a model of nociception? Physiol Res 45:1–9

    PubMed  Google Scholar 

  34. Yang Q, Wu ZZ, Li X, Li ZW, Wei JB, Hu QS (2002) Modulation by oxytocin of ATP-activated currents in rat dorsal root ganglion neurons. Neuopharmacology 43:910–916

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mete Ozcan.

Additional information

A preliminary form of this study was presented in Physiology 2009 (6–10 July 2009, Main Meeting of The Physiological Society), Dublin, Ireland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayar, A., Ozcan, M., Alcin, E. et al. Oxytocin activates calcium signaling in rat sensory neurons through a protein kinase C-dependent mechanism. J Physiol Biochem 70, 43–48 (2014). https://doi.org/10.1007/s13105-013-0278-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-013-0278-z

Keywords

Navigation