Skip to main content

Antihyperglycemic, hypolipidemic and antioxidant activities of ethanolic extract of Commiphora mukul gum resin in fructose-fed male Wistar rats

Abstract

High fructose feeding (66 % of fructose) induces type-2 diabetes in rats, which is associated with the insulin resistance, hyperinsulinemia, hypertriglyceridemia and oxidative stress. The present study was undertaken to evaluate the effect of ethanol extract of Commiphora mukul gum resin (CMEE) on blood glucose, plasma insulin, lipid profiles, reduced glutathione, lipid peroxidation, protein oxidation and enzymatic antioxidants like superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, glutathione-S-transferase in fructose-induced type-2 diabetic rats. A significant gain in body weight, hyperglycemia, hyperinsulinemia, increased lipid profiles, lipid peroxidation, protein oxidation and decreased reduced glutathione, activities of enzymatic antioxidants and insulin sensitivity (increased homeostasis assessment assay) were observed in high-fructose-induced diabetic rats. The administration of CMEE (200 mg/kg/day) daily for 60 days in high-fructose-induced diabetic rats reversed the above parameters significantly. CMEE has the ability to improve insulin sensitivity and delay the development of insulin resistance, aggravate antioxidant status in diabetic rats and may be used as an adjuvant therapy for patients with insulin resistance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

CAT:

Catalase

CMEE:

Ethanolic extract of Commiphora mukul

CON:

Control

CON +CMEE:

Control + Commiphora mukul ethanol extract

FFA:

Free fatty acids

FRU:

Fructose

FRU+CMEE:

Fructose + Commiphora mukul ethanol extract

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Reduced glutathione

GST:

Glutathione-S-transferase

HOMA:

Homeostasis model assessment

IR:

Insulin resistance

LPO:

Lipid peroxidation

NIDDM:

Non-insulin-dependent diabetes mellitus

PO:

Protein oxidation

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBARS:

Thiobarbituric-acid-reactive substances

References

  1. 1.

    Alarcon FJ, Aguilar R, Roman Romas Perez Gutierrez G, Aguilar Contreras A, Contrears Weber CC, Flores Saenz JL et al (1998) Study of the anti-hyperglycemic effect of plants used as antidiabetics. J Ethanopharmacol 61:101–110

    Article  Google Scholar 

  2. 2.

    Anhauser M (2003) Pharmacists seek the solution of a shaman. Drug Discov Today 8:868–869

    PubMed  Article  Google Scholar 

  3. 3.

    Beers RF, Sizer JW (1952) Spectrophotometric method for measuring breakdown of hydrogen peroxide catalase. J Biol Chem 195:133–140

    PubMed  CAS  Google Scholar 

  4. 4.

    Benhamou PY, Moriscot C, Richard MJ, Beatrix O, Badet L, Pattou F, Kerr-Conte J, Chroboczed J, Lemarchand P, Halimi S et al (1998) Adenovirus-mediated catalase gene transfer reduces oxidant stress in human, porcine and rat pancreatic islets. Diabetologia 41:1093–1100

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Ceriello A, Giugliano D, Quatraro A, Donzella C, Dipalo G, Lefebvre PJ et al (1991) Vitamin E reduction of protein glycosylation in diabetes: new prospect for prevention of diabetic complications. Diabetes Care 14:68–72

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Condell RA, Tappel AL (1983) Evidence for suitability of glutathione peroxidase as a protective enzyme: studies of oxidative damage restoration and proteolysis. Arch Biochem Biophys 223:407–416

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    De Champlain J, Wu R, Girouard H, Karas M, El Midaoui A, Laplante MA, Wu L et al (2004) Oxidative stress in hypertension. Clin Exp Hypertens 26:593–601

    PubMed  Article  Google Scholar 

  8. 8.

    Domingues C, Ruiz E, Gussinye M, Carrascosa A et al (1998) Oxidative stress at onset and in early stages of type 1 diabetes in children and adolescents. Diabetes Care 21:1736–1742

    Article  Google Scholar 

  9. 9.

    Duncan DB (1955) Multiple range and multiple tests. Biometrics 42:1–42

    Article  Google Scholar 

  10. 10.

    Ellman GL (1959) Tissue sulphydryl. Arch Biochem Biophys 82:70–77

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Eriksson JW (2007) Metabolic stress in insulin’s target cells leads to ROS accumulation—a hypothetical common pathway causing insulin resistance. FEBS Lett 581:3734–3742

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Evans JL, Goldfine ID, Maddux BA, Grodsky GM et al (2003) Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 52:1–8

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Evans JL, Youngren J, Goldfine ID et al (2004) Effective treatments for insulin resistance trims the fat and douses the fire. Trends Endocrinal Metab 15:425–431

    CAS  Google Scholar 

  14. 14.

    Flohe L (1971) Glutathione peroxidation in vitamin E deficient rat liver homogenate. Arch Biochem Biophys 97:51–58

    Google Scholar 

  15. 15.

    George LK, Mary RL (2004) Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol 122:333–338

    Article  Google Scholar 

  16. 16.

    Ginsberg HN (2000) Insulin resistance and cardiovascular disease. J Clin Invest 106:453–458

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Grundy SM (1999) Hypertriglyceridaemia, insulin resistance, and the metabolic syndrome. Am J Cardiol 83:F25–F29?

    Google Scholar 

  18. 18.

    Habig WH, Pabst MJ, Jakoby WB et al (1974) Glutathione-S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  19. 19.

    Hallfrisch J (1990) Metabolic effects of dietary fructose. FASEB 4:2625–2660

    Google Scholar 

  20. 20.

    Hu X, Sato J, Oshida Y, Yu M, Bajotto G, Sato Y et al (2003) Effect of Gosha-jinkigan (Chinese herbal medicine: Niuchesenqiwan) on insulin resistance in streptozotocin induced diabetic rats. Diabetes Res Clin Pract 59:103–111

    PubMed  Article  Google Scholar 

  21. 21.

    Hwang H, Ho B, Hoffman B, Reaven GM et al (1987) Fructose induced insulin resistance and hypertension in rats. Hypertens 10:512–516

    Article  CAS  Google Scholar 

  22. 22.

    Joyeux-Faure M, Rossini E, Ribuot C, Faur P et al (2006) Fructose-fed rat hearts are protected against ischemia–reperfusion injury. Exp Biol Med 231:456–462

    CAS  Google Scholar 

  23. 23.

    Karuna R, Saralakumari D (2011) Prevention effect of Catharanthus roseus (Linn) against high-fructose diet-induced insulin resistance and oxidative stress in male Wistar rats. J DM 1(3):63–70

    Google Scholar 

  24. 24.

    Kasim-Karakas SE, Vriend H, Almario R, Chow LC, Goodman MN et al (1996) Effect of dietary carbohydrates on glucose and lipid metabolism in golden Syrian hamsters. J Lab Clin Med 128:208–213

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Kruszynska YT, Olefsky JM (1996) Cellular and molecular mechanisms of non insulin dependent diabetes mellitus. J Invest Med 44:413–428

    CAS  Google Scholar 

  26. 26.

    Lee MK, Miles DP, Khoursheed M, Gao KM, Moossa AR, Olefsky MJ et al (1994) Metabolic effects of troglitazone on fructose induced insulin resistance in the rat. Diabetes 43:35–1439

    Google Scholar 

  27. 27.

    Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz A, Ahn BW, Shaltier S, Stadtman ER et al (1990) Determination of carbonyl content in oxidatively modified proteins. Method Enzymol 186:464–478

    Article  CAS  Google Scholar 

  28. 28.

    Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ et al (1951) Protein measurement with the Folin’s-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  29. 29.

    Moore MC, Cherrington AD, Mann SL, Davis SN et al (2000) Acute fructose administration decreases the glycemic response to an oral glucose tolerance test in normal adults. J Clin Endocrinol Metab 85:4515–4519

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Nagarajan M, Waszkuc TW, Sun J et al (2001) Simultaneous determination of E- and Z-guggulsterones in dietary supplements containing Commiphora mukul extract (guggulipid) by liquid chromatography. JAOAC Int 84:24–28

    CAS  Google Scholar 

  31. 31.

    Nityanand S, Kapoor NK (1973) Cholesterol lowering activity of the various fractions of the guggul. Indian J Exp Biol 11:395–3987

    PubMed  CAS  Google Scholar 

  32. 32.

    Pickavance LC, Tadayyon M, Widdowson PS, Buckingham RE, Wilding JP et al (1999) Therapeutic index for rosiglitazone in dietary obese rats. Seperation of efficacy and haemodiluation. Br J Pharmacol 128:1570–1576

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Pinto RE, Bartley W (1969) The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates. J Biochem 12:109–115

    Google Scholar 

  34. 34.

    Ram Singh B, Niaz MA, Ghosh S et al (1994) Hypolipidemic and antioxidant effects of Commiphora mukul as an adjunct to dietary therapy in patients with hypercholesterolemia. Cardiovasc Drugs Ther 8(4):659–664

    Article  Google Scholar 

  35. 35.

    Ramesh B, Karuna R, Sreenivasa Reddy S, Ramesh Babu K, Ramatholisamma P, Appa Rao CH, Saralakumari D et al (2011) Antihyperglycemic and antioxidant activities of alcoholic extract of Commiphora mukul gum resin in STZ induced diabetic rats. J Pathophysiol 18:255–261

    Article  Google Scholar 

  36. 36.

    Reaven MG, Twersk J, Chang H et al (1991) Abnormalities of carbohydrate and lipid metabolism in Dahl rats. Hypertens 18:630–635

    Article  CAS  Google Scholar 

  37. 37.

    Reddy SS, Karuna R, Baskar R, Saralakumari D et al (2008) Prevention of insulin resistance by ingesting aqueous extract of Ocimum sanctum to fructose-fed rats. Horm Metab Res 40:44–49

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Reddy SS, Ramatholisamma P, Karuna R, Saralakumari D et al (2009) Preventive effect of Tinospora Cordiafolia against high-fructose diet-induced insulin resistance and oxidative stress in male Wistar rats. Food Chem Toxicol 47:2224–2229

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Rizkalla SW, Boillot J, Tricottet V et al (1993) Effects of chronic dietary fructose with and without copper supplementation on glycemic control, adiposity, insulin binding to adipocytes and glomerular basement membrane thickness in normal rats. Br J Nutr 70:199–209

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Rohner-Jeanrenaud F, Jeanrenaud B (1996) Obesity, leptin, and the brain. N Engl J Med 334:324–325 (editorial)

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Rosen P, Ohly P, Gleichmann H et al (1997) Experimental benefit of moxonidine on glucose metabolism and insulin secretion in the fructose fed rats. J Hypertens 15:31–38

    Google Scholar 

  42. 42.

    Rotsruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG et al (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  Google Scholar 

  43. 43.

    Sakai M, Oimoni M, Kasuga M et al (2002) Experimental studies on the role of fructose in the development of diabetic complications. Kobe J Med Sci 48:125–136

    PubMed  CAS  Google Scholar 

  44. 44.

    Sambandam N, Lim F, Cam CM, Rodrigues B et al (1997) Cardiac heparin-releasable lipoprotein lipase activity in fructose-hypertensive rats: effect of coronary vasodilatation. J Cardiovas Pharmacol 30:110–117

    Article  CAS  Google Scholar 

  45. 45.

    Sandrine D, Eleni P, Richard M, Caroline A, Theophile D, Jean-Paul C, Gerard C, Jacqueline A et al (2005) Involvement of oxidative stress and NADPH oxidase activation in the development of cardiovascular complications in a model of insulin resistance, the fructose-fed rats. Atherosclerosis 179:43–49

    Article  Google Scholar 

  46. 46.

    Simons LA (2002) Additive effect of plant sterol-ester margarine and cerivastatin in lowering low density lipoprotein cholesterol in primary hypercholesterolemia. Am J Cardiol 90:737–740

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Soforowo A (1983) Medicinal plants and traditional medicine in Africa. Wiley, New York

    Google Scholar 

  48. 48.

    Soon YY, Tan BKH (2002) Evaluation of the hypoglycemic and antioxidant activities of Morinda officinalis in streptozotocin-induced diabetic rats. Singapore Med J 43:77–85

    CAS  Google Scholar 

  49. 49.

    Steiner G (1994) Hyperinsulinaemia and hypertriglyceridaemia. J Intern Med 736(Suppl):23–26

    CAS  Google Scholar 

  50. 50.

    Stringer MD, Goroj PG, Freeman A, Kokkar VV et al (1989) Lipid peroxides and atherosclerosis. Br Med J 298:281–284

    Article  CAS  Google Scholar 

  51. 51.

    Szekanecz Z, Koch AE, Kunkel SL, Strieter RM et al (1998) Cytokines in rheumatoid arthritis. Potential targets for pharmacological intervention. Drugs Aging 12:377–390

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Thorburn AW, Storlien LH, Jenkins AB, Khouri S, Kraegen EW et al (1989) Fructose induced in vivo insulin resistance and elevated plasma triglyceride levels in rats. Am J Clin Nutr 49:1155–1163

    PubMed  CAS  Google Scholar 

  53. 53.

    Thresher JS, Podolin DA, Wei Y, Mazzeo RS, Pagliassotti MJ et al (2000) Comparison of the effects of sucrose and fructose on insulin action and glucose tolerance. Am J physiol Regul Integr Comp Physiol 279R:334–340

    Google Scholar 

  54. 54.

    Urizar NL, Moore D (2003) Gugulipid: natural cholesterol-lowering agent. Annu Rev Nutr 23:303–313

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Utley HG, Bernheim F, Hochstein P et al (1967) Effect of sulfhydryl reagents on peroxidation in microsomes. Arch Biochem Biophys 118:29–32

    Article  CAS  Google Scholar 

  56. 56.

    Xu B, Moritz JT, Epstein PN et al (1999) Overexpression of catalase provides partial protection to transgenic mouse β-cells. Free Radic Biol Med 27:830–837

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Yalow RS, Berson SA (1961) Immunoassay of plasma insulin in man. Diabetes 10:339–348

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Ch. Appa Rao, Dr. E.G.T.V. Kumar and Dr. K. Ramesh Babu, Sri Venkateswara University, Tirupati, for their help with the insulin assay.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Saralakumari.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ramesh, B., Saralakumari, D. Antihyperglycemic, hypolipidemic and antioxidant activities of ethanolic extract of Commiphora mukul gum resin in fructose-fed male Wistar rats. J Physiol Biochem 68, 573–582 (2012). https://doi.org/10.1007/s13105-012-0175-x

Download citation

Keywords

  • Commiphora mukul
  • Insulin resistance
  • High fructose diet
  • Hypertriglyceridemia
  • Hyperinsulinemia
  • Antioxidant