Skip to main content

Advertisement

Log in

Double-stranded Let-7 mimics, potential candidates for cancer gene therapy

  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs), a class of small, single-stranded endogenous RNAs, act as post-transcriptional regulators of gene expression. The ability of one single miRNA regulating multiple functionally related mRNAs makes it a new potential candidate for cancer gene therapy. Let-7s miRNAs have been demonstrated as tumor-suppressor genes in various types of cancers, providing one choice of gene therapy by replenishing this miRNA. In the present studies, we demonstrate that the chemically synthesized, double-stranded Let-7 mimics can inhibit the growth and migration and induce the cell cycle arrest of lung cancer cell lines in vitro. Let-7 mimics silence gene expression by binding to the 3′ UTR of targeting mRNAs. Mutation of seed sequence significantly depresses the gene silencing activity of Let-7 mimics. Our results also demonstrate that it is possible to increase the activity of Let-7s through mutating the sequence within the 3′end of the antisense strand. Directly, co-transfection Let-7 mimics with active siRNAs impairs the anti-cancer activities of Let-7 mimics. However, a 3-h interval between the introduction of Let-7 mimics and a kind of siRNA avoids the competition and enhances the anti-cancer activities of Let-7 mimics. Taken together, these results have revealed that Let-7s mimics are potential candidates for cancer gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akao Y, Nakagawa Y, Naoe T (2006) Let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29:903–906

    Article  PubMed  CAS  Google Scholar 

  2. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  PubMed  CAS  Google Scholar 

  3. Boudreau RL, Martins I, Davidson BL (2008) Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol Ther 17:169–175

    Article  PubMed  Google Scholar 

  4. Castanotto D, Rossi JJ (2009) The promises and pitfalls of RNA-interference-based therapeutics. Nature 457:426–433

    Article  PubMed  CAS  Google Scholar 

  5. Castanotto D, Sakurai K, Lingeman R et al (2007) Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Res 35:5154–5164

    Article  PubMed  CAS  Google Scholar 

  6. Ding L, Getz G, Wheeler DA et al (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075

    Article  PubMed  CAS  Google Scholar 

  7. Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17:438–442

    Article  PubMed  CAS  Google Scholar 

  8. Esmerina T, Jean-Jacques M, Varsha G, William P, Deepa S, Adrian CG (2007) MiRNAs and their potential for use against cancer and other diseases, miRNA-based gene therapy. Future Oncol 3:521–537

    Article  Google Scholar 

  9. Esquela-Kerscher A, Trang P, Wiggins JF et al (2008) The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 7:759–764

    Article  PubMed  CAS  Google Scholar 

  10. Filipowicz W, Jaskiewicz L, Kolb FA, Pillai RS (2005) Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol 15:331–341

    Article  PubMed  CAS  Google Scholar 

  11. Garzon R, Liu S, Fabbri M et al (2009) MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113:6411–6418

    Article  PubMed  CAS  Google Scholar 

  12. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640

    Article  PubMed  CAS  Google Scholar 

  13. Hüser D, Gogol-Döring A, Lutter T et al (2010) Integration preferences of wildtype AAV-2 for consensus rep-binding sites at numerous loci in the human genome. PLoS Pathog 6:e1000985

    Article  PubMed  Google Scholar 

  14. Inamura K, Togashi Y, Nomura K et al (2007) Let-7 microRNA expression is reduced in bronchioloalveolar carcinoma, a non-invasive carcinoma, and is not correlated with prognosis. Lung Cancer 58:392–396

    Article  PubMed  Google Scholar 

  15. Ivanovska I, Ball AS, Diaz RL et al (2008) MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol 28:2167–2174

    Article  PubMed  CAS  Google Scholar 

  16. Jackson A, Linsley PS (2010) The therapeutic potential of microRNA modulation. Discov Med 9:311–318

    PubMed  Google Scholar 

  17. Johnson CD, Esquela-Kerscher A, Stefani G et al (2007) The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 67:7713–7722

    Article  PubMed  CAS  Google Scholar 

  18. Johnson SM, Grosshans H, Shingara J et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647

    Article  PubMed  CAS  Google Scholar 

  19. Jones S, Zhang X, Parsons DW et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    Article  PubMed  CAS  Google Scholar 

  20. Kaiser PK, Symons RC, Shah SM et al (2010) RNAi-based treatment for neovascular age-related macular degeneration by Sirna-027. Am J Ophthalmol 150:33–39.e2

    Article  PubMed  CAS  Google Scholar 

  21. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    Article  PubMed  CAS  Google Scholar 

  22. Koller E, Propp S, Murray H et al (2006) Competition for RISC binding predicts in vitro potency of siRNA. Nucleic Acids Res 34:4467–4476

    Article  PubMed  CAS  Google Scholar 

  23. Kota J, Chivukula RR, O’Donnell KA et al (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017

    Article  PubMed  CAS  Google Scholar 

  24. Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, Jacks T (2008) Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA 105:3903–3908

    Article  PubMed  CAS  Google Scholar 

  25. Lee I, Ajay SS, Yook JI et al (2009) New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites. Genome Res 19:1175–1183

    Article  PubMed  CAS  Google Scholar 

  26. Lee ST, Chu K, Oh HJ et al (2010) Let-7 microRNA inhibits the proliferation of human glioblastoma cells. J Neurooncol (in press)

  27. Lee YS, Dutta A (2007) The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Gene Dev 21:1025–1030

    Article  PubMed  CAS  Google Scholar 

  28. Lin T, Dong W, Huang J, Pan Q, Fan X, Zhang C, Huang L (2009) MicroRNA-143 as a tumor suppressor for bladder cancer. J Urol 181:1372–1380

    Article  PubMed  CAS  Google Scholar 

  29. Lu J, Qian J, Chen F et al (2005) Differential expression of components of the microRNA machinery during mouse organogenesis. Biochem Biophy Res Co 334:319–323

    Article  Google Scholar 

  30. Luo J, Solinini NL, Elledge SJ (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136:823–837

    Article  PubMed  CAS  Google Scholar 

  31. Maniataki E, Mourelatos Z (2005) A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev 19:2979–2990

    Article  PubMed  CAS  Google Scholar 

  32. Manno CS, Pierce GF, Arruda VR et al (2006) Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response. Nat Med 12:342–347

    Article  PubMed  CAS  Google Scholar 

  33. Matsubara H, Takeuchi T, Nishikawa E et al (2007) Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene 26:6099–6105

    Article  PubMed  CAS  Google Scholar 

  34. Metias SM, Lianidou E, Yousef GM (2009) MicroRNAs in clinical oncology: at the crossroads between promises and problems. J Clin Pathol 62:771–776

    Article  PubMed  CAS  Google Scholar 

  35. Oberdoerffer P, Kanellopoulou C, Heissmeyer V et al (2005) Efficiency of RNA interference in the mouse hematopoietic system varies between cell types and developmental stages. Mol Cell Biol 25:3896–3905

    Article  PubMed  CAS  Google Scholar 

  36. Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    Article  PubMed  CAS  Google Scholar 

  37. Peng Y, Laser J, Shi G, Mittal K, Melamed J, Lee P, Wei JJ (2008) Antiproliferative effects by Let-7 repression of high-mobility group A2 in uterine leiomyoma. Mol Cancer Res 6:663–673

    Article  PubMed  CAS  Google Scholar 

  38. Petri A, Lindow M, Kauppinen S (2009) MicroRNA silencing in primates: towards development of novel therapeutics. Cancer Res 69:393–395

    Article  PubMed  CAS  Google Scholar 

  39. Sampson VB, Rong NH, Han J et al (2007) MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67:9762–9770

    Article  PubMed  CAS  Google Scholar 

  40. Sasaki T, Shiohama A, Minoshima S, Shimizu N (2003) Identification of eight members of the Argonaute family in the human genome small star, filled. Genomics 82:323–330

    Article  PubMed  CAS  Google Scholar 

  41. Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  PubMed  CAS  Google Scholar 

  42. Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  PubMed  CAS  Google Scholar 

  43. Sharma SV, Settleman J (2007) Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev 21:3214–3231

    Article  PubMed  CAS  Google Scholar 

  44. Shell S, Park SM, Radjabi AR (2007) Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci USA 104:11400–11405

    Article  PubMed  CAS  Google Scholar 

  45. Solimini NL, Luo J, Elledge SJ (2007) Non-oncogene addiction and the stress phenotype of cancer cells. Cell 130:986–988

    Article  PubMed  CAS  Google Scholar 

  46. Takamizawa J, Konishi H, Yanagisawa K et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756

    Article  PubMed  CAS  Google Scholar 

  47. Tavazoie SF, Alarcón C, Oskarsson T et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–152

    Article  PubMed  CAS  Google Scholar 

  48. Torrisani J, Bournet B, du Rieu MC et al (2009) Let-7 microRNA transfer in pancreatic cancer-derived cells inhibits in vitro cell proliferation but fails to alter tumor progression. Hum Gene Ther 20:831–844

    Article  PubMed  CAS  Google Scholar 

  49. Tsuda N, Kawano K, Efferson CL, Ioannides CG (2005) Synthetic microRNA and double-stranded RNA targeting the 3′-untranslated region of HER-2/neu mRNA inhibit HER-2 protein expression in ovarian cancer cells. Int J Oncol 27:1299–1306

    PubMed  CAS  Google Scholar 

  50. van Rooij E, Marshall WS, Olson EN (2008) Toward microRNA based therapeutics for heart disease: the sense in antisense. Circ Res 103:919–928

    Article  PubMed  Google Scholar 

  51. Vickers TA, Lima WF, Nichols JG (2007) Reduced levels of Ago2 expression result in increased siRNA competition in mammalian cells. Nucleic Acids Res 35:6598–6610

    Article  PubMed  CAS  Google Scholar 

  52. Wang Q, Diao Y, Lv Y, Li Z, XU R (2009) Mutant K-ras-specific siRNA inhibits proliferation, migration and induces apoptosis of lung cancer A549 cells. Chin J Cancer Biother 16:564–569

    CAS  Google Scholar 

  53. Wang Q, Lv Y, Diao Y, Xu R (2008) The design of vectors for RNAi delivery system. Curr Pharma Design 14:1327–1340

    Article  CAS  Google Scholar 

  54. Wang Q, Xu W, Habib N, Xu R (2009) Potential uses of miRNA in lung cancer diagnosis, prognosis, and therapy. Curr Cancer Drug Targets 9:572–594

    Article  PubMed  CAS  Google Scholar 

  55. Weidhaas JB, Babar I, Nallur SM et al (2007) MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 67:11111–11116

    Article  PubMed  CAS  Google Scholar 

  56. Weinstein IB, Joe A (2008) Oncogene addiction. Cancer Res 68:3077–3080

    Article  PubMed  CAS  Google Scholar 

  57. Yanaihara N, Caplen N, Bowman E et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198

    Article  PubMed  CAS  Google Scholar 

  58. Yu F, Yao H, Zhu P et al (2007) Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131:1109–1123

    Article  PubMed  CAS  Google Scholar 

  59. Zeng Y, Yi R, Cullen BR (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA 100:9779–9784

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant number 30900822), the Key grant Project of Chinese Ministry of Education (No: 210252), the Key Project of Fujian Provincial Department of Science and Technology (No.2010Y0036), and Huaqiao University program (09BS517).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruian Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Qz., Lv, Yh., Gong, Yh. et al. Double-stranded Let-7 mimics, potential candidates for cancer gene therapy. J Physiol Biochem 68, 107–119 (2012). https://doi.org/10.1007/s13105-011-0124-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-011-0124-0

Keywords

Navigation