Advertisement

Journal of Physiology and Biochemistry

, Volume 68, Issue 2, pp 289–304 | Cite as

Usefulness of combining intermittent hypoxia and physical exercise in the treatment of obesity

  • Aritz Urdampilleta
  • Pedro González-Muniesa
  • María P. Portillo
  • J. Alfredo MartínezEmail author
Mini Review

Abstract

Obesity is an important public health problem worldwide and is a major risk factor for a number of chronic diseases such as type II diabetes, adverse cardiovascular events and metabolic syndrome-related features. Different treatments have been applied to tackle body fat accumulation and its associated clinical manifestations. Often, relevant weight loss is achieved during the first 6 months under different dietary treatments. From this point, a plateau is reached, and a gradual recovery of the lost weight may occur. Therefore, new research approaches are being investigated to assure weight maintenance. Pioneering investigations have reported that oxygen variations in organic systems may produce changes in body composition. Possible applications of intermittent hypoxia to promote health and in various pathophysiological states have been reported. The hypoxic stimulus in addition to diet and exercise can be an interesting approach to lose weight, by inducing higher basal noradrenalin levels and other metabolic changes whose mechanisms are still unclear. Indeed, hypoxic situations increase the diameter of arterioles, produce peripheral vasodilatation and decrease arterial blood pressure. Furthermore, hypoxic training increases the activity of glycolytic enzymes, enhancing the number of mitochondria and glucose transporter GLUT-4 levels as well as improving insulin sensitivity. Moreover, hypoxia increases blood serotonin and decreases leptin levels while appetite is suppressed. These observations allow consideration of the hypothesis that intermittent hypoxia induces fat loss and may ameliorate cardiovascular health, which might be of interest for the treatment of obesity. This new strategy may be useful and practical for clinical applications in obese patients.

Keywords

Obesity Body weight loss Intermittent hypoxia Treatment Physical exercise 

Notes

Acknowledgements

We are grateful to fellowship research training at the University of Basque Country (UPV-EHU), to the EXPLORA Subprogramme, MICINN, Spain (SAF2010-11630-E) for grants, to the University of Navarra for financial support through the linea especial of Nutrición, Obesidad y Salud (LE/97), as well as to BIOLASTER for technical support on the hypoxic systems and RETICS (PREDIMED) and CIBERobn from the Ministry of Health of Spain.

Conflicts of interest

The authors declare not having any personal or financial support or involvement with organizations with financial interest in the subject matter or any actual or potential conflicts of interest.

References

  1. 1.
    Abete I, Astrup A, Martínez JA, Thorsdottir I, Zulet MA (2010) Obesity and the metabolic syndrome: role of different dietary macronutrient distribution patterns and specific nutritional components on weight loss and maintenance. Nutr Rev 68:214–2131PubMedCrossRefGoogle Scholar
  2. 2.
    Abete I, Parra MD, Zulet MA, Martínez JA (2006) Different dietary strategies for weight loss in obesity: role of energy and macronutrient content. Nutr Res Rev 19:5–17PubMedCrossRefGoogle Scholar
  3. 3.
    Acker H (2005) The oxygen sensing signal cascade under the influence of reactive oxygen in skeletal muscle. Philos Trans R Soc Lond B Biol Sci 360:2201–2210PubMedCrossRefGoogle Scholar
  4. 4.
    Amardottir ES, Mackiewicz M, Gislason T, Teff KL, Pack AI (2009) Molecular signatures of obstructive sleep apnea in adults: a review and perspective. Sleep 32(4):447–470Google Scholar
  5. 5.
    Anderson JW, Konz EC, Frederich RC, Wood CL (2001) Long-term weight-loss maintenance: a meta-analysis of US studies. Am J Clin Nutr 74:579–584PubMedGoogle Scholar
  6. 6.
    Antezana AM, Kacimi R, Letrong JL, Marchal M, Aboushal I, Dubrai C et al (1994) Adrenergic status of humans during prolonged exposure to the altitude of 6,542 m. J Apply Physiol 76:1055–1059CrossRefGoogle Scholar
  7. 7.
    Aragones J, Scheneider M, Van Geyte K, Kraisl P, Dresselaers T, Mazzone M et al (2008) Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat Genet 40:170–180PubMedCrossRefGoogle Scholar
  8. 8.
    Aranceta J, Pérez C, Serra LI, Ribas L, Quiles J, Vioque J, et al y Grupo Colaborativo SEEDO (2003) Prevalencia de obesidad en España. Resultados del estudio SEEDO 2000. Med Clin (Barc) 608–612.Google Scholar
  9. 9.
    Asanov AO (2006) Changes in the ventilation function of the lungs in elderly people during adaptation to periodic hypoxia. Ukr Pulm J 2:68–69Google Scholar
  10. 10.
    Avenell A, Grant AM, McGee M, McPherson G, Campbell MK, McGee MA et al (2004) The effects of an open design on trial participant recruitment, compliance and retention—a randomized controlled trial comparison with a blinded, placebo-controlled design. Clin Trials 1(6):490–498PubMedCrossRefGoogle Scholar
  11. 11.
    Azevedo JL, Carey JO, Pories WJ, Morris TG, Dohm-Lynid G (1995) Hypoxia stimulates glucose transport in insulin-resistant human skeletal muscle. Diabetes 44:695–698PubMedCrossRefGoogle Scholar
  12. 12.
    Bailey DM, Davies B, Baker J (2000) Training in hypoxia: modulation of metabolic and cardiovascular risk factors in men. Med Sci Sport Exerc 32:1058–1066CrossRefGoogle Scholar
  13. 13.
    Baldi JC, Snowling N (2003) Resistance training improves glycaemic control in obese type 2 diabetic men. Int J Sports Med 24:419–423PubMedCrossRefGoogle Scholar
  14. 14.
    Banegas JR, López-García E, Gutiérrez-Fisac JL, Guallar-Castillón J, Rodríguez-Artalejo F (2003) A simple estimate of mortality attributable to excess weight in the European Union. Eur J Clin Nutr 57:201–208PubMedCrossRefGoogle Scholar
  15. 15.
    Bassovitch O (2007). Training manual for fully biofeedback controlled Go2Altitude hypoxicator ONEPLUS. Biomedtech Australia Pty Ltd. www.go2altitude.com.
  16. 16.
    Basulto J, Baladia E, Manera M (2009) Posicionamiento del GREP-AEDN: complementos alimenticios para la pérdida de peso. Actividad dietética 13(1):41–42CrossRefGoogle Scholar
  17. 17.
    Beidleman BA, Muza SR, Fulco CS, Cymerman A, Sawka MN, Lewis SF, Skrinar GS (2008) Seven intermittent exposures to altitude improves exercise performance at 4300 m. Med Sci Sports Exerc 40:141–148PubMedGoogle Scholar
  18. 18.
    Belikova MV, Asanov EO (2006) Effects of intermittent normobaric hypoxic training of the lipid peroxidation intensity and antioxidant system state in the blood plasma in essentially healthy people of different ages. Probl Aging Longevity 2:128–131Google Scholar
  19. 19.
    Bernardi L (2001) Interval hypoxic training. Adv Exp Med Biol 502:377–399PubMedGoogle Scholar
  20. 20.
    Bray G, Bouchard C, James WPT (1998) Definitions and proposed current classifications of obesity. In: Bray G, Bouchard C, James WPT (eds) Handbook of obesity. Marcel Dekker, New York, pp 31–40Google Scholar
  21. 21.
    Brooks GA, Butterfield GE, Wolfé RR, Groves BM, Mazzeo RS, Suston JR et al (1991) Increased dependence on blood glucose after acclimatization to 4300 m. J Appl Physiol 70:919–923PubMedCrossRefGoogle Scholar
  22. 22.
    Brooks N, Layne JE, Gordon PL, Roubenoff R, Nelson ME, Castaneda-Sceppa C (2007) Strength training improves muscle quality and insulin sensitivity in Hispanic older adults with type 2 diabetes. Int J Med Sci 4:19–27CrossRefGoogle Scholar
  23. 23.
    Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K et al (2004) Bariatric surgery: a systematic review and meta-analysis. JAMA 292:1724–1737PubMedCrossRefGoogle Scholar
  24. 24.
    Burtscher M, Pachinger O, Ehrenbourg I, Mitterbauer G, Faulhaber M, Pühringer R et al (2004) Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. Int J Cardiol 96:247–254PubMedCrossRefGoogle Scholar
  25. 25.
    Calbet JA, Robach P, Lundby C (2009) The exercising heart at altitude. Cell Mol Life Sci 66(22):3601–3613PubMedCrossRefGoogle Scholar
  26. 26.
    Campión J, Milagro F, Martínez JA (2010) Epigenetics and obesity. Prog Mol Biol Transl Sci 94:291–347PubMedCrossRefGoogle Scholar
  27. 27.
    Caramelo C, Peña JJ, Castilla A, Justo S, De Solis AJ, Neria F et al (2006) Respuesta a la hypoxia. Un mecanismo sistémico basado en el control de la expresión génica. Medicina (BA) 66:155–164Google Scholar
  28. 28.
    Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936PubMedCrossRefGoogle Scholar
  29. 29.
    Casey DP, Walker BG, Curry TB, Joyner MJ (2011) Ageing reduces the compensatory vasodilatation during hypoxic exercise: the role of nitric oxide. J Physiol 15(6):1477–1488CrossRefGoogle Scholar
  30. 30.
    Cauza E, Hanusch-Enserer U, Strasser B (2005) The relative benefits of endurance and strength training on the metabolic factors and muscle function of people with type 2 diabetes mellitus. Arch Phys Med Rehabil 86:1527–1533PubMedCrossRefGoogle Scholar
  31. 31.
    Cauza E, Strehblow C, Metz-Schimmerl S, Strasser B, Hanusch-Enserer U, Kostner K et al (2009) Effects of progressive strength training on muscle mass in type 2 diabetes mellitus patients determined by computed tomography. Wien Med Wochenschr 159(5–6):141–147PubMedCrossRefGoogle Scholar
  32. 32.
    Cerretelli P, Samaja M (2003) Acid-base balance at exercise in normoxia and in chronic hypoxia. Revisiting the “lactate paradox”. Eur J Appl Physiol 90:431–448PubMedCrossRefGoogle Scholar
  33. 33.
    Chiu LL, Chou SW, Cho YM, Ho HY, Ivy JL, Hunt D et al (2004) Effect of prolonged intermittent hypoxia and exercise training on glucose tolerance and muscle GLUT4 protein expression in rats. J Biomed Sci 11:838–846PubMedCrossRefGoogle Scholar
  34. 34.
    Chou SW, Chiu LL, Cho YM, Ho HY, Ivy JL, Ho CF et al (2004) Effect of systemic hypoxia on GLUT-4 protein expression in exercise rat heart. Jpn J Physiol 54:357–363PubMedCrossRefGoogle Scholar
  35. 35.
    Clanton TL, Zuo L, Klawiter P (1999) Oxidants and skeletal muscle function: physiologic and pathophysiologic implications. Proc Soc Exp Biol Med 222:253–262PubMedCrossRefGoogle Scholar
  36. 36.
    Cocate PG, Pereira LG, Marins JC, Cecon PR, Bressan J, Alfenas RC (2011) Metabolic responses to high glycemic index and low glycemic index meals: a controlled crossover clinical trial. Nutr J 5(10):1–11CrossRefGoogle Scholar
  37. 37.
    Colucci RA (2011) Bariatric surgery in patients with type 2 diabetes: a viable option. Postgrad Med 123:24–33PubMedCrossRefGoogle Scholar
  38. 38.
    Cuff DJ, Meneilly GS, Martin A, Ignaszewski A, Tildesley HD, Frohlich JJ (2003) Effective exercise modality to reduce insulin resistance in women with type 2 diabetes. Diabetes Care 22:2977–2982CrossRefGoogle Scholar
  39. 39.
    Dansinger ML, Gleason JA, Griffith JL, Selker HP, Schaefer EJ (2005) Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. JAMA 293:43–53PubMedCrossRefGoogle Scholar
  40. 40.
    Daussin FN, Zoll J, Ponsot E, Dufour SP, Doutreleau S, Lonsdorfer E et al (2008) Training at high exercise intensity promotes qualitative adaptations of mitochondrial function in human skeletal muscle. J Appl Physiol 104:1436–1441PubMedCrossRefGoogle Scholar
  41. 41.
    Dela F, Kjaer M (2006) Resistance training, insulin sensitivity and muscle function in the elderly. Essays Biochem 42:75–88PubMedCrossRefGoogle Scholar
  42. 42.
    De la Garza AL, Milagro FI, Boque N, Campión J, Martínez JA (2011) Natural inhibitors of pancreatic lipase as new players in obesity treatment. Planta Med 77(8):773–785PubMedCrossRefGoogle Scholar
  43. 43.
    Donina ZhA, Lavrova IN, Tikhonov MA (2008) Effects of intermittent hypoxic training on orthostatic reactions of the cardiorespiratory system. Bull Exp Biol Med 145:661–664PubMedCrossRefGoogle Scholar
  44. 44.
    Drager LF, Jun JC, Polotsky VY (2010) Metabolic consequences of intermittent hypoxia: relevance to obstructive sleep apnea. Best Pract Res Clin Endocrinol Metab 24:843–851PubMedCrossRefGoogle Scholar
  45. 45.
    Elfhag K, Rössner S (2005) Who succeeds in maintaining weight loss? A conceptual review of factors associated with weight loss maintenance and weight regain. Obes Rev 16:67–85CrossRefGoogle Scholar
  46. 46.
    Fenkci S, Sarsan A, Rota S, Ardic F (2006) Effects of resistance or aerobic exercises on metabolic parameters in obese women who are not on a diet. Adv Ther 23(3):404–413PubMedCrossRefGoogle Scholar
  47. 47.
    Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974PubMedCrossRefGoogle Scholar
  48. 48.
    Finer N (2001) Low-calorie diets and sustained weight loss. Obes Res 9:s290–s294CrossRefGoogle Scholar
  49. 49.
    Franks PW, Hanson RL, Knowler WC, Sievers ML, Bennett PH, Looker HC (2010) Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med 362:485–493PubMedCrossRefGoogle Scholar
  50. 50.
    Garaulet M, Pérez de Heredia F (2009) Behavioural therapy in the treatment of obesity (I): new directions for clinical practice. Nutr Hosp 24:629–639PubMedGoogle Scholar
  51. 51.
    Gonzales GF (1980) Serotonin blood levels under several physiological situations. Life Sci 27:647–650PubMedCrossRefGoogle Scholar
  52. 52.
    Gonzalez NC, Clancy RL, Moue Y, Richalet JP (1998) Increasing maximal heart rate increases maximal O2 uptake in rats acclimatized to simulated altitude. J Appl Physiol 84:164–168PubMedGoogle Scholar
  53. 53.
    Heiat A, Vaccarino V, Krumholz HM (2001) An evidence-based assessment of federal guidelines for overweight and obesity as they apply to elderly persons. Arch Intern Med 18:1194–1203CrossRefGoogle Scholar
  54. 54.
    Hetzler RK, Stickley CD, Kimura IF, LaBotz M, Nichols AW, Nakasone KT et al (2009) The effect of dynamic intermittent hypoxic conditioning on arterial oxygen saturation. Wilderness Environ Med Spring 20:26–32CrossRefGoogle Scholar
  55. 55.
    Hirota K, Semenza GL (2001) Regulation of hypoxia sensing. Curr Opin Cell Biol 13:167–171CrossRefGoogle Scholar
  56. 56.
    Holloszy JO (2005) Exercise-induced increase in muscle insulin sensitivity. J Appl Physiol 99:338–343PubMedCrossRefGoogle Scholar
  57. 57.
    Hoppeler H, Klossner S, Vogt M (2008) Training in hypoxia and its effects on skeletal muscle tissue. Scand J Med Sci Sports 18:38–49PubMedCrossRefGoogle Scholar
  58. 58.
    Hoppeler H, Vogt M (2001) Muscle tissue adaptations to hypoxia. J Exp Biol 204:3133–3139PubMedGoogle Scholar
  59. 59.
    Hunter GR, Bryan DR, Wetzstein CJ, Zuckerman PA, Bamman MM (2002) Resistance training and intraabdominal adipose tissue in older men and women. Med Sci Sports Exerc 34:1023–1028PubMedCrossRefGoogle Scholar
  60. 60.
    Ibáñez I (2005) La aplicación del preacondicionamiento hipóxico en Medicina Anti-Aging. Trabajo de Investigación presentada en la Universidad de Barcelona.Google Scholar
  61. 61.
    Ibañez J, Izquierdo M, Argüelles I, Forga L, Larrión JL, García-Unciti M, Idoate F, Gorostiaga EM (2005) Twice-weekly progressive resistance training decreases abdominal fat and improves insulin sensitivity in older men with type 2 diabetes. Diabetes Care 28:662–667PubMedCrossRefGoogle Scholar
  62. 62.
    Idoate F, Ibañez J, Gorostiaga EM, García-Unciti M, Martínez-Labari C, Izquierdo M (2011) Weight-loss diet alone or combined with resistance training induces different regional visceral fat changes in obese women. Int J Obes 35:700–713CrossRefGoogle Scholar
  63. 63.
    Ishchuk VO (2007) Safety and efficacy of the intermittent normobaric hypoxic training of elderly patients with ischemic heart disease. J Acad Med Sci Ukraine 13:374–384Google Scholar
  64. 64.
    Jackson MJ, Pye D, Palomero J (2007) The production of reactive oxygen and nitrogen species by skeletal muscle. J Appl Physiol 102:1664–1670PubMedCrossRefGoogle Scholar
  65. 65.
    James WP, Astrup A, Finer N, Hilsted J, Kopelman P, Rossner S et al (2000) Effect of sibutramine on weight maintenance after weight loss: a randomised trial. STORM Study Group (Sibutramine Trial of Obesity Reduction and Maintenance). Lancet 356:2119–2125PubMedCrossRefGoogle Scholar
  66. 66.
    James WP (2005) Assessing obesity: are ethnic differences in body mass index and waist classification criteria justified? Obes Rev 6(3):179–181PubMedCrossRefGoogle Scholar
  67. 67.
    Jeffery RW, Wing RR, Sherwood NE, Tate DF (2003) Physical activity and weight loss: does prescribing higher physical activity goals improve outcome? Am J Clin Nutr 78:684–689PubMedGoogle Scholar
  68. 68.
    Katayama K, Ishida K, Iwasaki K, Kiyamura M (2009) Effect of two duration of short-term intermittent hypoxia exposures on ventilatory response in humans. Higt Alt Med Biol 105:815–821Google Scholar
  69. 69.
    Katayama K, Smith CA, Henderson KS, Dempsey JA (2000) Chronic intermittent hypoxia increases the CO2 reserve in sleeping dogs. J Appl Physiol 103:1942–1949CrossRefGoogle Scholar
  70. 70.
    Keich SW, Redden DT, Katzmarzyk PT, Boggiano MM, Hanlon EC, Benca RM et al (2006) Putative contributors to the secular increase in obesity: exploring the roads less travelled. Int J Obes 30:1585–1594CrossRefGoogle Scholar
  71. 71.
    Kelley DE, Kuller LH, McKolanis TM, Harper T, Mancino J, Kalhan S (2004) Orlistat on insulin resistance, regional adiposity, and fatty acids in type 2 diabetes mellitus. Diabetes Care 33–40.Google Scholar
  72. 72.
    Kelly KR, Williamson DL, Fealy CE, Kriz DA, Krishnan RK, Huang H et al (2010) Acute altitude-induced hypoxia suppresses plasma glucose and leptin in healthy humans. Metab 59:200–205CrossRefGoogle Scholar
  73. 73.
    Killgore GL, Coste SC, O’ Meara SE, Konnecke CJ (2010) A comparison of the physiological exercise intensity differences between shod and barefoot submaximal deep-water running at the same cadence. J Strength Cond Res 24(12):3302–3312PubMedCrossRefGoogle Scholar
  74. 74.
    Koehl M, Meerlo P, Gonzales D, Rontal A, Turek FW, Abrous DN (2008) Exercise-induced promotion of hippocampal cell proliferation requires beta-endorphin. FASEB J 22:2253–2262PubMedCrossRefGoogle Scholar
  75. 75.
    Kolchinskaya AZ, Tsyganova NT, Ostapenko LA (2003) Normobaric interval hypoxic training in medicine and sports: manual for physicians. Meditsina, MoscowGoogle Scholar
  76. 76.
    Kolesnikova EE, Safronova OS, Serebrovskaya TV (2003) Age-related peculiarities of breathing regulation and antioxidant enzymes under intermittent hypoxic training. J Physiol Pharmacol 54:20–24PubMedGoogle Scholar
  77. 77.
    Korkushko OV, Shatilo VB, Ishchuk VA (2010) Effectiveness of intermittent normobaric hypoxic trainings in elderly patients with coronary artery disease. Adv Gerontol 23:476–482PubMedGoogle Scholar
  78. 78.
    Korkushko OV, Pysaruk AV, Lyshnevs’ka VIu, Asanov EO, Chebotar’ov MD (2005) Age peculiarities of cardiorespiratory system reaction to hypoxia. Fiziol Zh 51:11–17PubMedGoogle Scholar
  79. 79.
    Kushner RF (2010) Obesity and therapeutic approaches to weight loss. Contemp Cardiol 1:91–106Google Scholar
  80. 80.
    Larsen TM, Dalskov SM, van Baak M, Jebb SA, Papadaki A, Pfeiffer AF et al (2010) Diets with high or low protein content and glycemic index for weight-loss maintenance. N Engl J Med 363:2102–2113PubMedCrossRefGoogle Scholar
  81. 81.
    Lecoultre V, Boss A, Tappy L, Borrani F, Tran C, Schneiter P et al (2010) Training in hypoxia fails to further enhance endurance performance and lactate clearance in well-trained men and impairs glucose metabolism during prolonged exercise. Exp Physiol 95:315–330PubMedCrossRefGoogle Scholar
  82. 82.
    Li Z, Maglione M, Tu W, Mojica W, Arterburn D, Shugarman LR et al (2005) Meta-analysis: pharmacologic treatment of obesity. Ann Intern Med 142:532–546PubMedGoogle Scholar
  83. 83.
    Ling Q, Sailan W, Ran J, Zhi S, Cen L, Yang X et al (2008) The effect of intermittent hypoxia on bodyweight, serum glucose and cholesterol in obesity mice. Pak J Biol Sci 11:869–875PubMedCrossRefGoogle Scholar
  84. 84.
    Lippl FJ, Neubauer S, Schipfer S, Lichter N, Tufman A, Otto B et al (2010) Hypobaric hypoxia causes body weight reduction in obese subjects. Obesity 184:675–681CrossRefGoogle Scholar
  85. 85.
    Louis M, Punjabi NM (2009) Effects of acute intermittent hypoxia on glucose metabolism in awake healthy volunteers. J Appl Physiol 106:1538–1544PubMedCrossRefGoogle Scholar
  86. 86.
    Lundby C, Gassmann M, Pilegaard H (2006) Regular endurance training reduces the exercise induces HIF-1 alpha and HIF-2 alpha mRNA expresion in human eskeletal muscle in normoxic conditions. Eur J Appl Physiol 96:363–969PubMedCrossRefGoogle Scholar
  87. 87.
    Mackenzie R, Maxwell N, Castle P, Brickley G, Watt P (2011) Acute hypoxia and exercise improve insulin sensitivity (S(I) (2*)) in individuals with type 2 diabetes. Diabetes Metab Res Rev 27:94–101PubMedCrossRefGoogle Scholar
  88. 88.
    Maggard MA, Shugarman LR, Suttorp M, Maglione M, Sugerman HJ, Livinston EH et al (2005) Meta-analysis: surgical treatment of obesity. Ann Intern Med 142:547–559PubMedGoogle Scholar
  89. 89.
    Margail I, Plotkine M, Lerouet D (2005) Antioxidant strategies in the treatment of stroke. Free Radic Biol Med 39:429–443CrossRefGoogle Scholar
  90. 90.
    Marti A, Goyenechea E, Martinez JA (2010) Nutrigenetics: a tool to provide personalized nutritional therapy to the obese. World Rev Nutr Diet 101:21–33PubMedCrossRefGoogle Scholar
  91. 91.
    Marti A, Martinez-Gonzalez MA, Martinez JA (2008) Interaction between genes and lifestyle factors on obesity. Proc Nutr So 67:1–8CrossRefGoogle Scholar
  92. 92.
    Marxwell PH (2005) Hypoxia-inducible factor as a physiological regulator. Exp Physiol 90:791–797CrossRefGoogle Scholar
  93. 93.
    McAllister EJ, Dhurandhar NV, Keith SW, Aronne LJ, Barger J, Baskin M et al (2009) Ten putative contributors to the obesity epidemic. Crit Rev Food Sci Nutr 49:868–913PubMedCrossRefGoogle Scholar
  94. 94.
    McCallister JW, Adkins EJ, O’Brien JM (2009) Obesity and acute lung injury. J Clin Chest Med 30:495–508CrossRefGoogle Scholar
  95. 95.
    McCarthy MI (2010) Genomics, type 2 diabetes, and obesity. N Engl J Med 363:2339–2350PubMedCrossRefGoogle Scholar
  96. 96.
    McGuire M, Bradford A (1999) Chronic intermittent hypoxia increases haematocrit and causes right ventricular hypertrophy in the rat. Respir Physiol 117:53–58PubMedCrossRefGoogle Scholar
  97. 97.
    Mcinnis KJ, Frankilin BA, Rippe JM (2003) Counseling for physical activity in overweight and obese patients. Am Fam Physician 67:1249–1256PubMedGoogle Scholar
  98. 98.
    Milano G, Corno AF, Lippa S, Von Segesser LK, Samaja M (2002) Chronic and intermittent hypoxia induce different degrees of myocardial tolerance to hypoxia-induced dysfunction. Exp Biol Med 227:389–397Google Scholar
  99. 99.
    Milano W, Petrella C, Casella A, Capasso A, Carrino S, Milano L (2005) Use of sibutramine, an inhibitor of the reuptake of serotonin and noradrenaline, in the treatment of binge eating disorder: a placebo-controlled study. Adv Ther 22:25–31PubMedCrossRefGoogle Scholar
  100. 100.
    Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP (2010) Combining hypoxic methods for peak performance. Sports Med 40(1):1–25PubMedCrossRefGoogle Scholar
  101. 101.
    Misra A, Khurana L (2008) Obesity and the metabolic syndrome in developing countries. J Clin Endocrinol Metab 93:S9–S30PubMedCrossRefGoogle Scholar
  102. 102.
    Morgan BJ (2009) Intermittent hypoxia: keeping it real. J Appl Physiol 107:1–3PubMedCrossRefGoogle Scholar
  103. 103.
    Mustajoki P, Pekkarinen T (2001) Very low energy diets in the treatment of obesity. Obes Res 2:61–72CrossRefGoogle Scholar
  104. 104.
    Ozeke O, Ozer C, Gungor M, Celenk MK, Dincer H, Ilicin G (2011) Chronic intermittent hypoxia caused by obstructive sleep apnea may play an important role in explaining the morbidity-mortality paradox of obesity. Med Hypotheses 76:61–63PubMedCrossRefGoogle Scholar
  105. 105.
    Park SK, Park JH, Kwon YC, Kim HS, Yoon MS, Park HT (2003) The effect of combined aerobic and resistance exercise training on abdominal fat in obese middle-aged women. J Physiol Anthropol Appl Human Sci 22:129–135PubMedCrossRefGoogle Scholar
  106. 106.
    Pirozzo S, Summerbell C, Cameron C, Glasziou P (2003) Should we recommend low-fat diets for obesity? Obes Rev 4(2):83–90PubMedCrossRefGoogle Scholar
  107. 107.
    Pittler MH, Ernst E (2005) Complementary therapies for reducing body weight: a systematic review. Int J Obes 25:1030–1038CrossRefGoogle Scholar
  108. 108.
    Ponsot E, Dufour SP, Zoll J, Doutrelau S, Guessan N, Geny B et al (2006) Exercise training in normobaric hypoxia in endurance runners. Improvement of mitochondrial properties in skeletal muscle. J Appl Physiol 100:1249–1257PubMedCrossRefGoogle Scholar
  109. 109.
    Prabbhakar NR (2001) Oxygen sensing during intermittent hypoxia: cellular to molecular mechanisms. J Appl Physiol 90:1986–1994CrossRefGoogle Scholar
  110. 110.
    Prommer N, Henicke K, Viola T, Cajigal J, Behn C, Smichdt WF (2007) Long-term intermittent hypoxia increases O2-trasport capacity but not VO2max. Hight Alt Med Biol 8:225–235CrossRefGoogle Scholar
  111. 111.
    Quintero P, Milagro FI, Campion MJA (2009) Impact of oxygen availability on body weight management. Med Hypothesis 74:901–907CrossRefGoogle Scholar
  112. 112.
    Ramel A, Arnarson A, Parra D, Kiely M, Bandarra NM, Martinéz JA et al (2010) Gender difference in the prediction of weight loss by leptin among overweight adults. Ann Nutr Metab 56:190–197PubMedCrossRefGoogle Scholar
  113. 113.
    Rasche K, Keller T, Tautz B, Hader C, Hergenc G, Antosiewicz J et al (2010) Obstructive sleep apnea and type 2 diabetes. Eur J Med Res 4:152–156Google Scholar
  114. 114.
    Riccardi G, Giaccob R, Rivellese AA (2004) Dietary fat, insulin sensitivity and the metabolic syndrome. Clin Nutr 23:447–456PubMedCrossRefGoogle Scholar
  115. 115.
    Rivest S, Richard D (1990) Involvement of corticotrophin-releasing factor in the anorexia induced by exercise. Brain Res Bull 25:169–172PubMedCrossRefGoogle Scholar
  116. 116.
    Roels B, Thomas C, Bentley DJ, Mercier J, Hayot M, Millet G (2007) Effects of intermittent hypoxic training on amino and fatty acid oxidative combustion in human permeabilized muscle fibers. J Appl Physiol 102:79–86PubMedCrossRefGoogle Scholar
  117. 117.
    Runkel N, Colombo-Benkmann M, Hüttl TP, Tigges H, Mann O, Flade-Kuthe R et al (2011) Evidence-based German guidelines for surgery for obesity. Int J Colorectal Dis 12:120–139Google Scholar
  118. 118.
    Salas-Salvadó J, Rubio MA, Barmany M, Moreno B, y Grupo colaborativo de SEEDO (2007) Consenso SEEDO 2007 para la evaluación del sobrepeso y la obesidad y establecimientos de criterios de intervención terapéutica. Rev Esp Obes 5:135–175Google Scholar
  119. 119.
    Salvador FJ (2008) Actualizaciones en el tratamiento farmacológico de la obesidad. Revista de la Sociedad Española de Medicina y Seguridad del Trabajo 3:162–173Google Scholar
  120. 120.
    Sarsan A, Ardic F, Ozgen M, Topuz O, Sermez Y (2006) The effects of aerobic and resistance exercises in obese women. Clin Rehabil 20:773–782PubMedCrossRefGoogle Scholar
  121. 121.
    Sarwer DB, Von Sydow GA, Vetter ML, Wadden TA (2009) Behavior therapy for obesity: where are we now? Curr Opin Endocrinol Diabetes Obes 16:347–352PubMedCrossRefGoogle Scholar
  122. 122.
    Semenza G (2002) Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 64:993–998PubMedCrossRefGoogle Scholar
  123. 123.
    Serebrovscaya TV, Manukhina EB, Smith ML, Dwney HF, Mallet RT (2008) Intermittent hypoxia: cause of or therapy for systemic hypertension? Exp Biol Med 233:627–650CrossRefGoogle Scholar
  124. 124.
    Shatilo VB, Korkushko OV, Ischuk VA, Downey HF, Serebrovscaya TV (2008) Effects of intermittent hypoxia training on exercise performance, hemodynamics and ventilation in healthy senior men. Hight Alt Med Biol 9:43–52CrossRefGoogle Scholar
  125. 125.
    Shaw I, Shaw BS (2006) Consequence of resistance training on body composition and coronary artery disease risk. Cardiovasc J S Afr 17:111–116PubMedGoogle Scholar
  126. 126.
    Shukla V, Singh SN, Vats P, Singh VK, Singh SB, Banerjee PK (2005) Ghrelin and leptin levels of sojourners and acclimatized lowlanders at high altitude. Nutr Neurosci 8:161–165PubMedCrossRefGoogle Scholar
  127. 127.
    Sigal RJ, Kenny GP, Boul’e NG et al (2007) Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med 147:357–669PubMedGoogle Scholar
  128. 128.
    Simonsen ML, Alessio HM, White P, Newsom DL, Hagerman AE (2010) Acute physical activity effects on cardiac gene expression. Exp Physiol 95:1071–1080PubMedCrossRefGoogle Scholar
  129. 129.
    Siren AL, Ehrenreich H (2001) Erythopoetin: a novel concept for neuroprotection. Eur Arch Psychiatry Clin Neurosci 251:179–184PubMedCrossRefGoogle Scholar
  130. 130.
    Solaini G, Baracca A, Lenaz G, Sgarbi G (2010) Hypoxia and mitochondrial oxidative metabolism. Biochim et Biophys Acta Bioenerg 1797:1171–1177CrossRefGoogle Scholar
  131. 131.
    Steil G, Volund A, Kahn S, Bergman RN (1995) Reduced sample number for calculation of insulin sensitivity and glucose effectiveness from the minimal model. Diabetes 96:431–442Google Scholar
  132. 132.
    Strasser B, Schobersberger W (2011) Evidence for resistance training as a treatment therapy in obesity. J Obes. doi: 10.1155/2011/482564
  133. 133.
    Strasser B, Siebert U, Schobersberger W (2010) Resistance training in the treatment of the metabolic syndrome: a systematic review and meta-analysis of the effect of resistance training on metabolic clustering in patients with abnormal glucose metabolism. Sports Med 40:397–415PubMedCrossRefGoogle Scholar
  134. 134.
    Sweeney ME, Hill JO, Heller PA, Baney R, DiGirolamo D (1993) Severe vs moderate energy restriction with and without exercise in the treatment of obesity: efficiency of weight loss. Am J Clin Nutr 57:127–134PubMedGoogle Scholar
  135. 135.
    Tambalis KA, Panagiotakos DB, Kavouras SA, Sidossis LS (2009) Responses of blood lipids to aerobic, resistance, and combined aerobic with resistance exercise training: a systematic review of current evidence. Angiology 60:614–632PubMedCrossRefGoogle Scholar
  136. 136.
    Tasali E, Van Cauter E (2002) Sleep-disordered breathing and the current epidemic of obesity: consequence or contributing factor? Am J Respir Crit Care Med 165:562–563PubMedGoogle Scholar
  137. 137.
    Thiel C, Vogt L, Claußnitzer G, Banzer W (2011) Energy cost of youth obesity exercise modes. Int J Sports Med 32:142–146PubMedCrossRefGoogle Scholar
  138. 138.
    Tiwari MM, Goede MR, Reynoso JF, Tsang AW, Oleynikov D, McBride CL (2011) Differences in outcomes of laparoscopic gastric bypass. Surg Obes Relat Dis 7(3):277–282PubMedCrossRefGoogle Scholar
  139. 139.
    Trayhurn P, Hoggard N, Mercer JG, Rayner DV (1999) Leptin: fundamental aspects. Int J Obes 23:22–28CrossRefGoogle Scholar
  140. 140.
    Trayhurn P, Wang B, Wood IS (2008) Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br J Nutr 100:227–235PubMedCrossRefGoogle Scholar
  141. 141.
    Tremblay A, Simoneau JA, Bouchard C (1994) Impact of exercise intensity on body fatness and skeletal muscle metabolism. Metabolism 43:814–818PubMedCrossRefGoogle Scholar
  142. 142.
    Tresierras MA, Balady GJ (2009) Resistance training in the treatment of diabetes and obesity: mechanisms and outcomes. J Cardiopulm Rehabil Prev 29:67–75PubMedGoogle Scholar
  143. 143.
    Urdampilleta A, Gomez-Zorita S, Martínez-Sanz JM, Roche E (2011) Eficacia de un programa de ejercicio físico en hypoxia intermitente en la mejora de la fuerza-resistencia aeróbica específica e inespecífica. Revista Española de Educación Física y Deportes 2:7–14Google Scholar
  144. 144.
    Van Baak MA, Astrup A (2009) Consumption of sugars and body weight. Obes Rev 10:9–23PubMedCrossRefGoogle Scholar
  145. 145.
    Villareal DT, Smith GI, Sinacore DR, Shah K, Mittendorfer B (2011) Regular multicomponent exercise increases physical fitness and muscle protein anabolism in frail, obese, older adults. Obesity 19:312–318PubMedCrossRefGoogle Scholar
  146. 146.
    Vimaleswaran KS, Loos RJ (2010) Progress in the genetics of common obesity and type 2 diabetes. Expert Rev Mol Med 12:e7PubMedCrossRefGoogle Scholar
  147. 147.
    Vincent HK, Bourguignon C, Vincent KR (2006) Resistance training lowers exercise-induced oxidative stress and homocysteine levels in overweight and obese older adults. Obesity 14:1921–1930PubMedCrossRefGoogle Scholar
  148. 148.
    Vogt M, Puntschart A, Geiser J, Zuleger C, Billeter R, Hoppeler H (2001) Molecular adaptations in human skeletal muscle to endurance training under simulates hypoxic conditions. J Appl Physiol 91:173–182PubMedGoogle Scholar
  149. 149.
    Vogtel M, Michels A (2010) Role of intermittent hypoxia in the treatment of bronchial asthma and chronic obstructive pulmonary disease. Curr Opin Allergy Clin Immunol 10:206–213PubMedCrossRefGoogle Scholar
  150. 150.
    Wang B, Wood IS, Trayhurn P (2007) Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch 455:479–492PubMedCrossRefGoogle Scholar
  151. 151.
    Wang JS, Lin HY, Cheng ML, Wong MK (2007) Chronic intermittent hypoxia modulates eosinophil and neutrophil platelet aggregation and inflammatory cytokine secretion caused by strenuous exercise in men. J Appl Physiol 103:305–314PubMedCrossRefGoogle Scholar
  152. 152.
    Watson NF, Goldberg J, Arguelles L, Buchwald D (2006) Genetic and environmental influences on insomnia, daytime sleepiness, and obesity in twins. Sleep 29:645–649PubMedGoogle Scholar
  153. 153.
    Werger RH (2000) Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol 203:1253–1263Google Scholar
  154. 154.
    Wernbom M, Augustsson J, Thome’e R (2007) The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med 37:225–264PubMedCrossRefGoogle Scholar
  155. 155.
    West MB, Rocosh G, Obal D, Yelayuthan M, Xan YT, Hill BG et al (2008) Cardiac myocyte-specific expression on inducible nitric oxide synthase protects against ischemia/reperfusion injury by preventing mitochondrial permeability transmission. Circulation 118:1970–1978PubMedCrossRefGoogle Scholar
  156. 156.
    Westerterp KR, Kayser B, Wouters L, Le Trong JL, Richalet JP (1994) Energy balance at high altitude of 6542 m. J Appl Physiol 77:862–866PubMedGoogle Scholar
  157. 157.
    White CW (2006) Commentary on “Hypoxia, hyposic signaling, tissue damage, and detection of reactive oxygen species (ROS)”. Free Radic Biol Med 40:923–927PubMedCrossRefGoogle Scholar
  158. 158.
    Wilber RL (2007) Application of altitude/hypoxic training by elite athletes. Med Sci Sports Exerc 39:1610–1624PubMedCrossRefGoogle Scholar
  159. 159.
    Williams MA, Haskell WL, Ades PA, Amsterdam EA, Bittner V, Franklin BA et al (2007) Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation 116:572–584PubMedCrossRefGoogle Scholar
  160. 160.
    Zaobornyj T, Valdez LB, Iglesias DE, Gasco M, Gonzales GF, Boveris A (2009) Mitochondrial nitric oxide metabolism during rat heart adaptation to high altitude: effect of sildenafil, l-NAME, and l-arginine treatments. Am J Physiol Heart Circ Physiol 296:H1741–H1747PubMedCrossRefGoogle Scholar
  161. 161.
    Zhu LL, Zhao T, Li H, Zhao H, Wu L, Ding A et al (2005) Neurogenesis in the adult rat brain after intermittent hypoxia. Brain Res 1005:1–6CrossRefGoogle Scholar
  162. 162.
    Zhu LL, Wu L, Yew DT, Fan M (2005) Effects of hypoxia on the proliferation and differentiation of SNCs. Mol Neurobiol 31:231–242PubMedCrossRefGoogle Scholar
  163. 163.
    Zoll J, Ponsot E, Dufour S, Doutreleau S, Ventura-Clapier R, Vogt M et al (2006) Exercise training in normobaric hypoxia in endurance runners. Muscular adjustments of selected gene transcripts. J Appl Physiol 100:1258–1266PubMedCrossRefGoogle Scholar
  164. 164.
    Zong P, Setty W, Sun R, Martinez JD, Tune IV, Ehrenburg EN et al (2004) Intermittent hypoxic training protects canine myocardium from inafrction. Esp Biol Med 229:806–812Google Scholar

Copyright information

© University of Navarra 2011

Authors and Affiliations

  • Aritz Urdampilleta
    • 1
    • 2
  • Pedro González-Muniesa
    • 3
  • María P. Portillo
    • 1
  • J. Alfredo Martínez
    • 3
    Email author
  1. 1.Department of Pharmacy and Food SciencesUniversity of Basque CountryVitoria-GasteizSpain
  2. 2.Department of NeurosciencesUniversity of Basque CountryVitoria-GasteizSpain
  3. 3.Department of Nutrition, Food Sciences, Physiology and ToxicologyUniversity of NavarraPamplonaSpain

Personalised recommendations