Skip to main content

Advertisement

Log in

Probable gamma-aminobutyric acid involvement in bisphenol A effect at the hypothalamic level in adult male rats

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate the effects of bisphenol A (BPA) on the neuroendocrine mechanism of control of the reproductive axis in adult male rats exposed to it during pre- and early postnatal periods. Wistar mated rats were treated with either 0.1% ethanol or BPA in their drinking water until their offspring were weaned at the age of 21 days. The estimated average dose of exposure to dams was approximately 2.5 mg/kg body weight per day of BPA. After 21 days, the pups were separated from the mother and sacrificed on 70 day of life. Gn-RH and gamma-aminobutyric acid (GABA) release from hypothalamic fragments was measured. LH, FSH, and testosterone concentrations were determined, and histological and morphometrical studies of testis were performed. Gn-RH release decreased significantly, while GABA serum levels were markedly increased by treatment. LH serum levels showed no changes, and FSH and testosterone levels decreased significantly. Histological studies showed abnormalities in the tubular organization of the germinal epithelium. The cytoarchitecture of germinal cells was apparently normal, and a reduction of the nuclear area of Leydig cells but not their number was observed. Taken all together, these results provide evidence of the effect caused by BPA on the adult male reproductive axis when exposed during pre- and postnatal period. Moreover, our findings suggest a probable GABA involvement in its effect at the hypothalamic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adachi T, Yasuda K, Mori C, Yoshinaga M, Aoki N, Tsujimoto G et al (2005) Promoting insulin secretion in pancreatic islets by means bisphenol A and nonylphenol via intracellular estrogen receptors. Food Chem Toxicol 43(5):713–719

    Article  PubMed  CAS  Google Scholar 

  2. Akingbemi B, Sottas C, Koulova A, Klinefelter G, Hardy M (2004) Inhibition of testicular steroidogenesis by the xenoestrogen Bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells. Endocrinology 145:592–603

    Article  PubMed  CAS  Google Scholar 

  3. Alonso-Magdalena P, Morimoto S, Ripoll C, Fuentes E, Nadal A (2006) The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance. Environ Health Perspect 114(1):106–112

    Article  PubMed  CAS  Google Scholar 

  4. Brann DW, Mahesh VB (1992) Excitatory amino acid regulation of gonadotrophin secretion: modulation by steroid hormone. J Steroid Biochem Mol Biol 41:847–850

    Article  PubMed  CAS  Google Scholar 

  5. Brotons JA, Olea Serrano MF, Villalobos M, Olea N (1995) Xenoestrogens released from laquer coating in food cans. Environ Health Perspect 103:608–612

    Article  PubMed  CAS  Google Scholar 

  6. Cagen SZ, Waechter JM Jr, Dimond SS, Breslin WJ, Butala JH, Jekat FW et al (1999) Normal reproductive organ development in Wistar rats exposed to bisphenol A in the drinking water. Regul Toxicol Pharmacol 30:130–139

    Article  PubMed  CAS  Google Scholar 

  7. Ebling FJP, Brooks N, Cronin AS et al (2000) Estrogenic induction of spermatogenesis in the hypogonadal mouse. Endocrinology 141:2861–2869

    Article  PubMed  CAS  Google Scholar 

  8. Farach-Carson MC, Davis PJ (2003) Steroid hormone interactions with target cells: cross talk between membrane and nuclear pathways. J Pharmacol Exp Ther 307(3):839–845

    Article  PubMed  CAS  Google Scholar 

  9. Flugge G, Oertel WH, Wuttke W (1986) Evidence for estrogen-receptive GABAergic neurons in the preoptic/anterior hypothalamic area of the rat brain. Neuroendocrinology 43:1–5

    Article  PubMed  CAS  Google Scholar 

  10. Francis RC, Soma K, Fernald RD (1993) Social regulation of the brain-pituitary-gonadal axis. Proc Natl Acad SCi USA 90(16):7748–7749

    Article  Google Scholar 

  11. Funabashi T, Kawaguchi M, Furuta M, Fukushima A, Kimura F (2004) Exposure to Bisphenol A during gestation and lactation causes loss of sex difference in corticotropin-releasing hormone immunoreactive neurons in the bed nucleus of the stria terminalis of rats. Psyconeuroendocrinology 29:475–485

    Article  CAS  Google Scholar 

  12. Gore AC, Heindel JJ, Zoeller RT (2006) Endocrine disruption for endocrinologist (and others). Endocrinology 147(6 Suppl):S1–S3

    Article  PubMed  CAS  Google Scholar 

  13. Gould JC, Leonard LS, Maness SC, Wagner BL, Conner K, Zacharewski T et al (1998) Bisphenol A interacts with the estrogen receptor alpha in distinct manner from estradiol. Mol Cell Endocrinol 142(1/2):203–214

    Article  PubMed  CAS  Google Scholar 

  14. Herbison AE (1998) Multimodal influence of estrogen upon gonadotropin-releasing hormone neurons. Endocr Rev 19:302–330

    Article  PubMed  CAS  Google Scholar 

  15. Hrabovszky E, Steinhauser AM, Barabás K, Shughrue J, Petersen S, Merchenthaler I et al (2000) Estrogen receptor β immunoreactivity in luteinizing hormone-releasing hormone neurons of the rat brain. Endocrinology 142(7):3261–3264

    Article  Google Scholar 

  16. Jarry H, Hirsch B, Leonhardt S, Wuttke W (1992) Amino acid neurotransmitter release in the preoptic area of rats during the positive feedback actions of estradiol on LH release. Neuroendocrinology 56:133–140

    Article  PubMed  CAS  Google Scholar 

  17. Kawai K, Murakami S, Semba E, Yamanaka T, Fuyiwara Y, arimura C et al (2007) Changes in estrogen receptors α and β expression in the brain of mice exposed prenatally to Bisphenol A. Regul Toxicol Pharmacol 47:166–170

    Article  PubMed  CAS  Google Scholar 

  18. Leranth C, Shanabrough M, Naftolin F (1991) Estrogen induces ultrastructural changes in progesterone receptor-containing GABA neurons of the primate hypothalamus. Neuroendocrinology 54:571–579

    Article  PubMed  CAS  Google Scholar 

  19. Maffini M, Rubin B, Sonnenschein C, Soto A (2006) Endocrine disruptors and reproductive health: the case of bisphenol A. Mol Cell Endocrinol 254–225:179–186

    Article  Google Scholar 

  20. Maffucci JA, Gore AC (2009) Hypothalamic neural systems controlling the female reproductive life cycle: gonadotropin-releasing hormone, glutamate, and GABA. Int Rev Cell Mol Biol 274:69–127

    Article  PubMed  CAS  Google Scholar 

  21. Mitsushima D, Hei DL, Terasawa E (1994) Aminobutyric acid is an inhibitory neurotransmitter restricting the release of luteinizing hormone-releasing hormone before the onset of puberty. Proc Natl Acad Sci USA 91:395–399

    Article  PubMed  CAS  Google Scholar 

  22. Mitsushima D, Kimura F (1997) The maturation of GABA A receptor-mediated control of luteinizing hormone secretion in immature male rats. Brain Res 748:258–262

    Article  PubMed  CAS  Google Scholar 

  23. Moguilevsky JA, Wuttke W (2001) Changes in the control of gonadotropin secretion by neurotransmitters during sexual development in rats. Exp Clin Endocrinol Diabetes 109:188–195

    Article  PubMed  CAS  Google Scholar 

  24. Nagel SC, vom Saal FS, Thayer KA, Dhar MG, Boechler M, Welshons WV (1997) Relative binding affinity-serum modified access assay predicts the relative in vivo bioactivity of xenoestrogens bisphenol A and octylphenol. Environ Health Perspect 105:70–76

    Article  PubMed  CAS  Google Scholar 

  25. Nakamura D, Yanagiba Y, Duan Z, Ito Y, Okamura A, Asaeda N, Tagawa Y, Li C, Taya K, Zhang SY, Naito H, Ramdhan DH, Kamijima M, Nakajima T (2010) Bisphenol A may cause testosterone reduction by adversely affecting both testis and pituitary systems similar to estradiol. Toxicol Lett 15;194(1–2):16–25.

    Google Scholar 

  26. Olea N, Pulgar R, Perez P, Olea-Serrano F, Rivas A, Novillo-Fertrell A et al (1996) Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect 104:298–305

    Article  PubMed  CAS  Google Scholar 

  27. Pedram A, Razandi M, Levin ER (2006) Nature of functional estrogen receptors at the plasma membrane. Mol Endocrinol 20(9):196–209

    Article  Google Scholar 

  28. Petersen SL, Ottem EN, Carpenter CD (2003) Direct and indirect regulation of gonadotropin-releasing hormone neurons by estradiol. Biol Reprod 69(6):1771–1778

    Article  PubMed  CAS  Google Scholar 

  29. Ramos J, Varayoud J, Kass L, Rodriguez H, Costabel L, Muñoz del Toro M, Luque E (2003) Bisphenol A induces both transient and permanent histofunctional alterations of the hypothalamic pituitary gonadal axis in prenatally exposed male rats. Endocrinology 114:3206–3215

    Article  Google Scholar 

  30. Rey D, Angelini N, Belsham D (1999) Estrogen directly represses gonadotropin-releasing hormone (Gn-RH) gene expression in estrogen receptor alpha (ER alpha) and ER-beta expressing GTI-7 Gn-RH neurons. Endocrinology 140:5045–5053

    Article  Google Scholar 

  31. Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, Vandenbergh JG, Walser-Kuntz DR, vom Saal FS (2007) In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 24:199–224

    Article  PubMed  CAS  Google Scholar 

  32. Rochira V, Zirilli L, Genazzani AD, Balestrieri A, Aranda C, Fabre B et al (2006) Hypothalamic pituitary-gonadal axis in two men with aromatase deficiency: evidence that circulating estrogens are required at the hypothalamic level for the integrity of gonadotropin negative feedback. Eur J Endocrinol 155:513–522

    Article  PubMed  CAS  Google Scholar 

  33. Rubin B, Murray M, Damassa D, King J, Soto AM (2001) Perinatal exposure to low doses of Bisphenol A affects body weight, patterns of estrous cyclicity and plasma LH levels. Environ Health Perspect 109:675–680

    Article  PubMed  CAS  Google Scholar 

  34. Sakaue M, Ohsako S, Ishimura R, Kurosawa S, Kurohmaru M, Hayashi Y, Aoki Y, Yomemoto J, Tohyama C (2001) Bisphenol A affects spermatogenesis in the adult rat even at low dose. J Occup Health 43:185–190

    Article  CAS  Google Scholar 

  35. Sharpe RM, Atanasova N, McKinnell C, Parte P, Turner KJ, Fisher JS, Kerr JB, Groome NP, Macpherson S, Millar MR, Saunders PTK (1998) Abnormalities in functional development of the Sertoli cells in rats treated neonatally with diethylstilbestrol: a possible role of estrogens in Sertoli cell development. Biol Reprod 59:1084–1094

    Article  PubMed  CAS  Google Scholar 

  36. Skynner MJ, Sim JA, Herbison AE (1999) Detection of estrogen receptor alfa and beta messenger ribonucleic acids in adult gonadotropin-releasing hormone neurons. Endocrinology 140:5195–5201

    Article  PubMed  CAS  Google Scholar 

  37. Stillman RJ (1982) In utero exposure to diethylstilbestrol: adverse effects on the reproductive tract and reproductive performance in male and female offspring. Am J Obstet Gynecol 142:905–921

    PubMed  CAS  Google Scholar 

  38. Sullivan SD, DeFazio RA, Moenter SM (2003) Metabolic regulation of fertility through presynaptic and postsynaptic signaling to gonadotropin-releasing hormone neurons. J Neurosci 23:8578–8585

    PubMed  CAS  Google Scholar 

  39. Terasawa E, Fernandez DL (2001) Neurobiological mechanisms of the onset of puberty in primates. Endocr Rev 22(1):111–151

    Article  PubMed  CAS  Google Scholar 

  40. Tohei A, Suda S, Taya K, Hashimoto T, Kogo H (2001) Bisphenol A inhibits testicular functions and increases luteinizing hormone secretion in adult male rats. Exp Biol Med 226(3):216–221

    CAS  Google Scholar 

  41. vom Saal FS, Cooke PS, Buchanan DL, Palanza P, Thayer KA, Nagel SC, Parmigiani S, Welshons WV (1998) A physiologically based approach to the study of Bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production and behavior. Toxicol Ind Health 14:239–260

    Google Scholar 

  42. Wetherill Y, Akingbemi B, Kanno J, McLachlan J, Nadal A, Sonnennschein C, Watson C, Zoeller T, Belcher S (2007) In vitro molecular mechanisms of Bisphenol A action. Reprod Toxicol 24:178–198

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the University of Buenos Aires (UBACYT M434- M006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roxana Reynoso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardoso, N., Pandolfi, M., Lavalle, J. et al. Probable gamma-aminobutyric acid involvement in bisphenol A effect at the hypothalamic level in adult male rats. J Physiol Biochem 67, 559–567 (2011). https://doi.org/10.1007/s13105-011-0102-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-011-0102-6

Keywords

Navigation