Skip to main content

Pineal–adrenal–immune system relationship under thermal stress: effect on physiological, endocrine, and non-specific immune response in goats


The purpose of the investigation was to observe the pineal–adrenal–immune system relationships and their influence on non-specific immune response in female goats under short-term thermal stress. Six female goats had been exposed to 40°C and 60% relative humidity in the psychrometric chamber for 17 days. Blood samples were obtained on days 0 and 10 to establish control and thermal stress effects, respectively. Chemical adrenalectomy was achieved by injecting metyrapone (100 mg/kg body weight) followed by exogenous melatonin treatment (0.1 mg/kg body weight) from 11th to 17th day of experiment. Thermal stress significantly (P ≤ 0.05) altered the physiological responses. Metyrapone and melatonin treatment significantly (P ≤ 0.05) reduced the thermal-stress-induced increase in plasma concentrations of cortisol and corticosterone while significantly (P ≤ 0.05) increased the plasma melatonin on days 11 and 17. Furthermore, these treatments significantly (P < 0.05) increased the phagocytic activity of neutrophils as compared to both control and thermal exposure values from 11–17 days of experiment. The data generated from this study help us to understand the functional relationship between pineal, adrenal, and immune system, and how this relationship modifies the non-specific immune response for the well being of goats during thermal stress.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Aggarwal A, Upadhyay RC, Singh SV, Kumar P (2005) Adrenal–thyroid pineal interaction and effect of exogenous melatonin during summer in crossbred cattle. Indian J Anim Sci 75:915–921

    CAS  Google Scholar 

  2. 2.

    Arlt W, Hewison M (2004) Hormones and immune function: implications of aging. Aging Cell 3:209–216

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Barriga C, Martin MI, Ortega E, Rodriguez AB (2002) Physiological concentration of melatonin and corticosterone in stress and their relationship with phagocytic activity. J Neuroendocrinol 14:691–696

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Besedovsky HO, Del Rey A (1996) Immune–neuro-endocrine interactions: facts and hypothesis. Endocr Rev 17:64–90

    CAS  PubMed  Google Scholar 

  5. 5.

    Carrillo-Vico A, Guerrero JM, Lardone PJ, Reiter RJ (2005) A review of the multiple actions of melatonin on the immune system. Endocr 27:189–200

    CAS  Article  Google Scholar 

  6. 6.

    Collier RJ, Collier JL, Rhoads RP, Baumgard LH (2008) Invited review: genes involved in the bovine heat stress response. J Dairy Sci 91(2):445–454

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Cupps T, Fauci AS (1982) Corticosteroid mediated immunoregulation in man. Immunol Rev 65:133–155

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Demitrack MA, Lewy AJ, Reus VI (1990) Pineal–adrenal interactions: the effect of acute pharmacological blockade of nocturnal melatonin secretion. Psychiatry Res 32:183–189

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Esquifino AI, Pandi-Perumal SR, Cardinali DP (2004) Circadian organization of the immune response: a role for melatonin. Clin Appl Immunol Rev 4:423–433

    CAS  Article  Google Scholar 

  10. 10.

    Farrell G (1960) Adrenoglomerulotropin. Circulation 21:1009–1015

    CAS  PubMed  Google Scholar 

  11. 11.

    Guerrero JM, Reiter RJ (2002) Melatonin–immune system relationships. Curr Top Med Chem 2:167–179

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Hajak G, Rodenbeck A, Ehrenthal HD, Leonard S, Wedekind D, Sengos G, Zhou D, Huether G (1997) No evidence for a physiological coupling between melatonin and glucocorticoids. Psychopharmacology 133:313–322

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Hriscu ML (2005) Modulatory factors of circadian phagocytic activity. Ann N Y Acad Sci 1057:403–430

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Johnson KG (1991) Body temperature and respiratory rate of free-ranging Merino sheep in and out of shade during summer. Aust J Agric Res 42:1347–1357

    Article  Google Scholar 

  15. 15.

    Kanchev LN, Baichev J, Kamenov I, Baikovb HallaK AK (2006) Melatonin, corticosterone, stress and phagocytic activity. Bulg J Vet Med 9(4):257–264

    Google Scholar 

  16. 16.

    Kannan G, Terrill TH, Kouakou B, Gazal OS, Gelaye S, Amoah EA, Samake S (2000) Transportation of goats: effects on physiological stress responses and live weight loss. J Anim Sci 78:1450–1457

    CAS  PubMed  Google Scholar 

  17. 17.

    Karasek M (2004) Melatonin, human aging, and age-related diseases. Exp Gerontol 39:1723–1729

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Khan JR, Ludri RS (2002) Hormone profile of crossbred goats during the periparturient period. Trop Anim Health Prod 34(2):151–162

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Konakchieva R, Mitev Y, Almeida OF, Patchev VK (1997) Chronic melatonin treatment and the hypothalamo–pituitary–adrenal axis in the rat: attenuation of the secretory response to stress and effects on hypothalamic neuropeptide content and release. Biol Cell 89(9):587–596

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Konakchieva R, Mitev Y, Almeida OFX, Patchev VK (1998) Chronic melatonin treatment counteracts glucocorticoid-induced dysregulation of the hypothalamic–pituitary–adrenal axis in the rat. Neuroendocrinology 67:171–180

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Liebmann PM, Wolfer A, Felsner P, Hofer D, Schauenstein K (1997) Melatonin and the immune system. Int Arch Allergy Appl Immunol 12:203–211

    Article  Google Scholar 

  22. 22.

    Lopes C, Mariano M, Markus RP (2001) Interaction between the adrenal and the pineal gland in chronic experimental inflammation induced by BCG in mice. Inflamm Res 50:006–011

    CAS  Article  Google Scholar 

  23. 23.

    Lunenburg M, Tuynman J, Bilderbeek J, Gaber T, Buttgereit F, Deventer SV, Peppelenbosch M, Hommes D (2005) Rapid immunosuppressive effects of glucocorticoids mediated through Lck and Fyn. Blood 106:1703–1710

    Article  Google Scholar 

  24. 24.

    Maestroni GJ (2001) The immunotherapeutic potential of melatonin. Expert Opin Investig Drugs 10:467–476

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Maestroni GJM, Conti A, Pierpaoli W (1988) Role of the pineal gland in immunity III. Melatonin antagonizes the immunosuppressive effects of acute stress opiatergic mechanism. Immunology 63:465–469

    CAS  PubMed  Google Scholar 

  26. 26.

    Malhotra S, Sawhney G, Pandhi P (2004) The therapeutic potential of melatonin: a review of the science. Medsc Gen Med 6:46–62

    Google Scholar 

  27. 27.

    Marai IFM, El-Darawany AA, Fadiel A, Abdel-Hafez MAM (2007) Physiological traits as affected by heat stress in sheep—a review. Small Rumin Res 71:1–12

    Article  Google Scholar 

  28. 28.

    Markus RP, Ferreira ZS, Fernandes PACM, Cecon E (2007) The immune-pineal axis: a shuttle between endocrine and paracrine melatonin sources. Neuroimmunomodulation 14:126–133

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Mc Manus C, Paludo GR, Louvandini H, Gugel R, Sasaki LCB, Paiva SR (2009) Heat tolerance in Brazilian sheep: physiological and blood parameters. Trop Anim Health Prod 41:95–101

    Article  Google Scholar 

  30. 30.

    Mostl E, Palme R (2002) Hormones as indicators of stress. Dom Anim Endocrinol 23(1–2):67–74

    CAS  Article  Google Scholar 

  31. 31.

    Nelson RJ (2004) Seasonal immune function and sickness responses. Trends Immunol 25:187–192

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Paredes SD, Terron MP, Marchena AM, Barriga C, Pariente JA, Reiter RJ, Rodriguez AB (2007) Effect of exogenous melatonin on viability, ingestion capacity, and free radical scavenging in heterophils from young and old ringdoves (Streptopelia risoria). Mol Cell Biochem 304:305–314

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Petrovsky N (2001) Towards a unified model of neuroendocrine–immune interaction. Immunol Cell Biol 79:350–357

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Reiter RJ (1995) The pineal gland and melatonin in relation to aging: the summary of theories and of the data. Exp Gerontol 30:199–212

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Rodriguez AB, Terron MP, Duran J, Ortega E, Barriga C (2001) Physiological concentrations of melatonin and corticosterone affect phagocytosis and oxidative metabolism of ringdove heterophils. J Pineal Res 31:31–38

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Roy B, SingH R, Kumar S, Rai U (2008) Diurnal variation in phagocytic activity of splenic phagocytes in freshwater teleost Channa punctatus: melatonin and its signaling mechanism. J Endocrinol 199:471–475

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Salak-Johnson JL, McGlone JJ (2007) Making sense of apparently conflicting data: stress and immunity in swine and cattle. J Anim Sci 85:E81–E88

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Sanchez S, Paredes SD, Martin MI, Barriga C, Rodriguez AB (2004) Effect of tryptophan on circulating levels of melatonin and phagocytic activity. J Appl Biomed 2:169–177

    CAS  Google Scholar 

  39. 39.

    Sejian V, Srivastava RS, Varshney VP (2008) Pineal–adrenal–thyroid relationships under thermal stress: effect on circulating levels of thyroid hormones in goats. Indian J Anim Sci 78:1263–1264

    Google Scholar 

  40. 40.

    Sejian V, Srivastava RS, Varshney VP (2008) Pineal-adrenal relationship: modulating effects of glucocorticoids on pineal function to ameliorate thermal-stress in goats. Asian-Australas J Anim Sci 21:988–994

    CAS  Google Scholar 

  41. 41.

    Srinivasan V, Maestroni GJM, Cardinali DP, Esquifino AI, Perumal SRP, Miller SC (2005) Melatonin, immune function and aging. Immun Ageing 2:17

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Touitou Y (1989) Pineal and hypothalamic–pituitary–adrenal axis. In: Reiter RJ, Pang SF (eds) Advances in pineal research, vol. 3. Libbey, London, pp 241–246

    Google Scholar 

  43. 43.

    Vakkuri O, Leppaluoto J, Vuolteenaho O (1984) Development and validation of a melatonin radioimmunoassay using radioiodinated melatonin as tracer. Acta Endocrinol 106:152–157

    CAS  PubMed  Google Scholar 

  44. 44.

    Varga G, Ehrchen J, Tsianakas A, Tenbrock K, Rattenholl A, Seeliger S, Mack M, Roth J, Sunderkoetter C (2008) Glucocorticoids induce an activated, anti-inflammatory monocyte subset in mice that resembles myeloid-derived suppressor cells. J Leukoc Biol 84:644–650

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Wen JC, Dhabhar FS, Prendergast BJ (2007) Pineal-dependent and -independent effects of photoperiod on immune function in Siberian hamsters (Phodopus sungorus). Horm Behav 51(1):31–39

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Wingfield JC, Kitaysky AS (2002) Endocrine responses to unpredictable environmental events: stress or anti-stress hormones? Integr Comp Biol 42(3):600–609

    CAS  Article  Google Scholar 

Download references


Research grant provided by Indian Veterinary Research Institute for conducting this study is duly acknowledged.

Author information



Corresponding author

Correspondence to Veerasamy Sejian.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sejian, V., Srivastava, R.S. Pineal–adrenal–immune system relationship under thermal stress: effect on physiological, endocrine, and non-specific immune response in goats. J Physiol Biochem 66, 339–349 (2010).

Download citation


  • Goats
  • Melatonin
  • Metyrapone
  • Cortisol
  • Corticosterone
  • Phagocytosis index
  • Thermal stress