Journal of Physiology and Biochemistry

, Volume 66, Issue 3, pp 265–270 | Cite as

Targeting of histamine producing cells by EGCG: a green dart against inflammation?

  • Esther Melgarejo
  • Miguel Ángel Medina
  • Francisca Sánchez-Jiménez
  • José Luis Urdiales
Mini Review


The human body is made of some 250 different cell types. From them, only a small subset of cell types is able to produce histamine. They include some neurons, enterochromaffin-like cells, gastrin-containing cells, mast cells, basophils, and monocytes/macrophages, among others. In spite of the reduced number of these histamine-producing cell types, they are involved in very different physiological processes. Their deregulation is related with many highly prevalent, as well as emergent and rare diseases, mainly those described as inflammation-dependent pathologies, including mastocytosis, basophilic leukemia, gastric ulcer, Crohn disease, and other inflammatory bowel diseases. Furthermore, oncogenic transformation switches some non-histamine-producing cells to a histamine producing phenotype. This is the case of melanoma, small cell lung carcinoma, and several types of neuroendocrine tumors. The bioactive compound epigallocatechin-3-gallate (EGCG), a major component of green tea, has been shown to target histamine-producing cells producing great alterations in their behavior, with relevant effects on their proliferative potential, as well as their adhesion, migration, and invasion potentials. In fact, EGCG has been shown to have potent anti-inflammatory, anti-tumoral, and anti-angiogenic effects and to be a potent inhibitor of the histamine-producing enzyme, histidine decarboxylase. Herein, we review the many specific effects of EGCG on concrete molecular targets of histamine-producing cells and discuss the relevance of these data to support the potential therapeutic interest of this compound to treat inflammation-dependent diseases.


EGCG Histamine-producing cells Inflammation 



The experimental work carried out by our group is supported by grants SAF 2005-01812 and PS09/02216 (Spanish Ministry of Science and Innovation), Fundación Ramón Areces, P07-CVI-02999 and group BIO-267 (Andalusian Government). The “CIBER de Enfermedades Raras” is an initiative of the ISCIII (Spain).


  1. 1.
    Ahmad N, Gupta S, Mukhtar H (2000) Green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor kappaB in cancer cells versus normal cells. Arch Biochem Biophys 376:338–346CrossRefPubMedGoogle Scholar
  2. 2.
    Ahmed S, Pakozdi A, Koch AE (2006) Regulation of interleukin-1beta-induced chemokine production and matrix metalloproteinase 2 activation by epigallocatechin-3-gallate in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 54:2393–2401CrossRefPubMedGoogle Scholar
  3. 3.
    Aktas O, Prozorovski T, Smorodchenko A, Savaskan NE, Lauster R, Kloetzel PM, Infante-Duarte C, Brocke S, Zipp F (2004) Green tea epigallocatechin-3-gallate mediates T cellular NF-kappa B inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J Immunol 173:5794–5800PubMedGoogle Scholar
  4. 4.
    Albrecht DS, Clubbs EA, Ferruzzi M, Bomser JA (2008) Epigallocatechin-3-gallate (EGCG) inhibits PC-3 prostate cancer cell proliferation via MEK-independent ERK1/2 activation. Chem Biol Interact 171:89–95CrossRefPubMedGoogle Scholar
  5. 5.
    Alvarez E, Leiro J, Orallo F (2002) Effect of (-)-epigallocatechin-3-gallate on respiratory burst of rat macrophages. Int Immunopharmacol 2:849–855CrossRefPubMedGoogle Scholar
  6. 6.
    Andriamanalijaona R, Kypriotou M, Bauge C, Renard E, Legendre F, Raoudi M, Boumediene K, Gatto H, Monginoux P, Pujol JP (2005) Comparative effects of 2 antioxidants, selenomethionine and epigallocatechin-gallate, on catabolic and anabolic gene expression of articular chondrocytes. J Rheumatol 32:1958–1967PubMedGoogle Scholar
  7. 7.
    Beaven M (1978) Histamine: its role in physiological and pathological process. Monogr Allergy 13:1–113PubMedGoogle Scholar
  8. 8.
    Bors W, Saran M (1987) Radical scavenging by flavonoid antioxidants. Free Radic Res Commun 2:289–294CrossRefPubMedGoogle Scholar
  9. 9.
    Brown NJ, Roberts II (2001) Histamine, bradykinin, and their antagonists. In: Hardman JG, Limbird LE, Gilman AG (eds) The Pharmaceutical Basis of Therapeutics, 10th edn. McGraw Hill, New York, pp 645–668Google Scholar
  10. 10.
    Cabrera C, Artacho R, Gimenez R (2006) Beneficial effects of green tea–a review. J Am Coll Nutr 25:79–99PubMedGoogle Scholar
  11. 11.
    Cao Y, Cao R (1999) Angiogenesis inhibited by drinking tea. Nature 398:381CrossRefPubMedGoogle Scholar
  12. 12.
    Chan MM, Fong D, Ho CT, Huang HI (1997) Inhibition of inducible nitric oxide synthase gene expression and enzyme activity by epigallocatechin gallate, a natural product from green tea. Biochem Pharmacol 54:1281–1286CrossRefPubMedGoogle Scholar
  13. 13.
    Chisaka T, Matsuda H, Kubomura Y, Mochizuki M, Yamahara J, Fujimura H (1988) The effect of crude drugs on experimental hypercholesteremia: mode of action of (-)-epigallocatechin gallate in tea leaves. Chem Pharm Bull (Tokyo) 36:227–233Google Scholar
  14. 14.
    Fujiki H, Suganuma M, Kurusu M, Okabe S, Imayoshi Y, Taniguchi S, Yoshida T (2003) New TNF-alpha releasing inhibitors as cancer preventive agents from traditional herbal medicine and combination cancer prevention study with EGCG and sulindac or tamoxifen. Mutat Res 523–524:119–125PubMedGoogle Scholar
  15. 15.
    Fujimura Y, Tachibana H, Yamada K (2001) A tea catechin suppresses the expression of the high-affinity IgE receptor Fc epsilon RI in human basophilic KU812 cells. J Agric Food Chem 49:2527–2531CrossRefPubMedGoogle Scholar
  16. 16.
    Fujimura Y, Tachibana H, Maeda-Yamamoto M, Miyase T, Sano M, Yamada K (2002) Antiallergic tea catechin, (-)-epigallocatechin-3-O-(3-O-methyl)-gallate, suppresses FcepsilonRI expression in human basophilic KU812 cells. J Agric Food Chem 50:5729–5734CrossRefPubMedGoogle Scholar
  17. 17.
    Fujimura Y, Umeda D, Kiyohara Y, Sunada Y, Yamada K, Tachibana H (2006) The involvement of the 67 kDa laminin receptor-mediated modulation of cytoskeleton in the degranulation inhibition induced by epigallocatechin-3-O-gallate. Biochem Biophys Res Commun 348:524–531CrossRefPubMedGoogle Scholar
  18. 18.
    Fujimura Y, Umeda D, Yano S, Maeda-Yamamoto M, Yamada K, Tachibana H (2007) The 67 kDa laminin receptor as a primary determinant of anti-allergic effects of O-methylated EGCG. Biochem Biophys Res Commun 364:79–85CrossRefPubMedGoogle Scholar
  19. 19.
    Fujimura Y, Umeda D, Yamada K, Tachibana H (2008) The impact of the 67 kDa laminin receptor on both cell-surface binding and anti-allergic action of tea catechins. Arch Biochem Biophys 476:133–138CrossRefPubMedGoogle Scholar
  20. 20.
    Graham HN (1992) Green tea composition, consumption, and polyphenol chemistry. Prev Med 21:334–350CrossRefPubMedGoogle Scholar
  21. 21.
    Gupta S, Hussain T, Mukhtar H (2003) Molecular pathway for (-)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Arch Biochem Biophys 410:177–185CrossRefPubMedGoogle Scholar
  22. 22.
    Haddad JJ (2002) Cytokines and related receptor-mediated signaling pathways. Biochem Biophys Res Commun 297:700–713CrossRefPubMedGoogle Scholar
  23. 23.
    Ho YC, Yang SF, Peng CY, Chou MY, Chang YC (2007) Epigallocatechin-3-gallate inhibits the invasion of human oral cancer cells and decreases the productions of matrix metalloproteinases and urokinase-plasminogen activator. J Oral Pathol Med 36:588–593PubMedGoogle Scholar
  24. 24.
    Hodgson JM, Puddey IB, Burke V, Beilin LJ, Jordan N (1999) Effects on blood pressure of drinking green and black tea. J Hypertens 17:457–463CrossRefPubMedGoogle Scholar
  25. 25.
    Hong J, Smith TJ, Ho CT, August DA, Yang CS (2001) Effects of purified green and black tea polyphenols on cyclooxygenase- and lipoxygenase-dependent metabolism of arachidonic acid in human colon mucosa and colon tumor tissues. Biochem Pharmacol 62:1175–1183CrossRefPubMedGoogle Scholar
  26. 26.
    Hosokawa Y, Hosokawa I, Ozaki K, Nakanishi T, Nakae H, Matsuo T (2010) Catechins inhibit CXCL10 production from oncostatin M-stimulated human gingival fibroblasts. J Nutr Biochem 21(7):659–664CrossRefPubMedGoogle Scholar
  27. 27.
    Inoue M, Tajima K, Hirose K, Hamajima N, Takezaki T, Kuroishi T, Tominaga S (1998) Tea and coffee consumption and the risk of digestive tract cancers: data from a comparative case-referent study in Japan. Cancer Causes Control 9:209–216CrossRefPubMedGoogle Scholar
  28. 28.
    Jankun J, Selman SH, Swiercz R, Skrzypczak-Jankun E (1997) Why drinking green tea could prevent cancer. Nature 387:561CrossRefPubMedGoogle Scholar
  29. 29.
    Katiyar SK, Mukhtar H (1997) Tea antioxidants in cancer chemoprevention. J Cell Biochem Suppl 27:59–67CrossRefPubMedGoogle Scholar
  30. 30.
    Kawai K, Tsuno NH, Kitayama J, Okaji Y, Yazawa K, Asakage M, Sasaki S, Watanabe T, Takahashi K, Nagawa H (2005) Epigallocatechin gallate induces apoptosis of monocytes. J Allergy Clin Immunol 115:186–191CrossRefPubMedGoogle Scholar
  31. 31.
    Kohda C, Yanagawa Y, Shimamura T (2008) Epigallocatechin gallate inhibits intracellular survival of Listeria monocytogenes in macrophages. Biochem Biophys Res Commun 365:310–315CrossRefPubMedGoogle Scholar
  32. 32.
    Kuo PL, Lin CC (2003) Green tea constituent (-)-epigallocatechin-3-gallate inhibits Hep G2 cell proliferation and induces apoptosis through p53-dependent and Fas-mediated pathways. J Biomed Sci 10:219–227PubMedGoogle Scholar
  33. 33.
    Kurien BT, Hensley K, Bachmann M, Scofield RH (2006) Oxidatively modified autoantigens in autoimmune diseases. Free Radic Biol Med 41:549–556CrossRefPubMedGoogle Scholar
  34. 34.
    Lambert JD, Yang CS (2003) Cancer chemopreventive activity and bioavailability of tea and tea polyphenols. Mutat Res 523–524:201–208PubMedGoogle Scholar
  35. 35.
    Lambert JD, Hong J, Yang GY, Liao J, Yang CS (2005) Inhibition of carcinogenesis by polyphenols: evidence from laboratory investigations. Am J Clin Nutr 81:284S–291SPubMedGoogle Scholar
  36. 36.
    Lee JH, Jin H, Shim HE, Kim HN, Ha H, Lee ZH (2010) Epigallocatechin-3-gallate inhibits osteoclastogenesis by down-regulating c-Fos expression and suppressing the nuclear factor-kappaB signal. Mol Pharmacol 77:17–25CrossRefPubMedGoogle Scholar
  37. 37.
    Lee S, Simon MD (1999) Role and regulation of cyclooxygenase-2 during inflammation. Am J Med 106:37S–42SCrossRefGoogle Scholar
  38. 38.
    Lee IP, Kim YH, Kang MH, Roberts C, Shim JS, Roh JK (1997) Chemopreventive effect of green tea (Camellia sinensis) against cigarette smoke-induced mutations (SCE) in humans. J Cell Biochem Suppl 27:68–75CrossRefPubMedGoogle Scholar
  39. 39.
    Li W, Ashok M, Li J, Yang H, Sama AE, Wang H (2007) A major ingredient of green tea rescues mice from lethal sepsis partly by inhibiting HMGB1. PLoS ONE 2:e1153CrossRefPubMedGoogle Scholar
  40. 40.
    Lin RW, Chen CH, Wang YH, Ho ML, Hung SH, Chen IS, Wang GJ (2009) (-)-Epigallocatechin gallate inhibition of osteoclastic differentiation via NF-kappaB. Biochem Biophys Res Commun 379:1033–1037CrossRefPubMedGoogle Scholar
  41. 41.
    Ludwig A, Lorenz M, Grimbo N, Steinle F, Meiners S, Bartsch C, Stangl K, Baumann G, Stangl V (2004) The tea flavonoid epigallocatechin-3-gallate reduces cytokine-induced VCAM-1 expression and monocyte adhesion to endothelial cells. Biochem Biophys Res Commun 316:659–665CrossRefPubMedGoogle Scholar
  42. 42.
    Maeda-Yamamoto M, Suzuki N, Sawai Y, Miyase T, Sano M, Hashimoto-Ohta A, Isemura M (2003) Association of suppression of extracellular signal-regulated kinase phosphorylation by epigallocatechin gallate with the reduction of matrix metalloproteinase activities in human fibrosarcoma HT1080 cells. J Agric Food Chem 51:1858–1863CrossRefPubMedGoogle Scholar
  43. 43.
    Mandel SA, Avramovich-Tirosh Y, Reznichenko L, Zheng H, Weinreb O, Amit T, Youdim MB (2005) Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. NeuroSignals 14:46–60CrossRefPubMedGoogle Scholar
  44. 44.
    Mandel S, Amit T, Bar-Am O, Youdim MB (2007) Iron dysregulation in Alzheimer's disease: multimodal brain permeable iron chelating drugs, possessing neuroprotective-neurorescue and amyloid precursor protein-processing regulatory activities as therapeutic agents. Prog Neurobiol 82:348–360CrossRefPubMedGoogle Scholar
  45. 45.
    McKay DL, Blumberg JB (2002) The role of tea in human health: an update. J Am Coll Nutr 21:1–13PubMedGoogle Scholar
  46. 46.
    Medina MA, Urdiales JL, Rodriguez-Caso C, Ramirez FJ, Sanchez-Jimenez F (2003) Biogenic amines and polyamines: similar biochemistry for different physiological missions and biomedical applications. Crit Rev Biochem Mol Biol 38:23–59CrossRefPubMedGoogle Scholar
  47. 47.
    Melgarejo E, Medina MA, Sanchez-Jimenez F, Botana LM, Dominguez M, Escribano L, Orfao A, Urdiales JL (2007) (-)-Epigallocatechin-3-gallate interferes with mast cell adhesiveness, migration and its potential to recruit monocytes. Cell Mol Life Sci 64:2690–2701CrossRefPubMedGoogle Scholar
  48. 48.
    Melgarejo E, Medina MA, Sanchez-Jimenez F, Urdiales JL (2009) Epigallocatechin gallate reduces human monocyte mobility and adhesion in vitro. Br J Pharmacol 158:1705–1712CrossRefPubMedGoogle Scholar
  49. 49.
    Menegazzi M, Tedeschi E, Dussin D, De Prati AC, Cavalieri E, Mariotto S, Suzuki H (2001) Anti-interferon gamma action of epigallocatechin-3-gallate mediated by specific inhibition of STAT1 activation. FASEB J 15:1309–1311PubMedGoogle Scholar
  50. 50.
    Meng Q, Velalar CN, Ruan R (2008) Effects of epigallocatechin-3-gallate on mitochondrial integrity and antioxidative enzyme activity in the aging process of human fibroblast. Free Radic Biol Med 44:1032–1041CrossRefPubMedGoogle Scholar
  51. 51.
    Monzen S, Mori T, Takahashi K, Abe Y, Inanami O, Kuwabara M, Kashiwakura I (2006) The effects of (-)-epigallocatechin-3-gallate on the proliferation and differentiation of human megakaryocytic progenitor cells. J Radiat Res (Tokyo) 47:213–220CrossRefGoogle Scholar
  52. 52.
    Nitta Y, Kikuzaki H, Ueno H (2007) Food components inhibiting recombinant human histidine decarboxylase activity. J Agric Food Chem 55:299–304CrossRefPubMedGoogle Scholar
  53. 53.
    Park G, Yoon BS, Moon JH, Kim B, Jun EK, Oh S, Kim H, Song HJ, Noh JY, Oh C, You S (2008) Green tea polyphenol epigallocatechin-3-gallate suppresses collagen production and proliferation in keloid fibroblasts via inhibition of the STAT3-signaling pathway. J Invest Dermatol 128:2429–2441CrossRefPubMedGoogle Scholar
  54. 54.
    Peng G, Dixon DA, Muga SJ, Smith TJ, Wargovich MJ (2006) Green tea polyphenol (-)-epigallocatechin-3-gallate inhibits cyclooxygenase-2 expression in colon carcinogenesis. Mol Carcinog 45:309–319CrossRefPubMedGoogle Scholar
  55. 55.
    Rodriguez-Caso C, Rodriguez-Agudo D, Sanchez-Jimenez F, Medina MA (2003) Green tea epigallocatechin-3-gallate is an inhibitor of mammalian histidine decarboxylase. Cell Mol Life Sci 60:1760–1763CrossRefPubMedGoogle Scholar
  56. 56.
    Roy AM, Baliga MS, Katiyar SK (2005) Epigallocatechin-3-gallate induces apoptosis in estrogen receptor-negative human breast carcinoma cells via modulation in protein expression of p53 and Bax and caspase-3 activation. Mol Cancer Ther 4:81–90PubMedGoogle Scholar
  57. 57.
    Sacca R, Cuff CA, Ruddle NH (1997) Mediators of inflammation. Curr Opin Immunol 9:851–857CrossRefPubMedGoogle Scholar
  58. 58.
    Sano M, Takahashi Y, Yoshino K, Shimoi K, Nakamura Y, Tomita I, Oguni I, Konomoto H (1995) Effect of tea (Camellia sinensis L.) on lipid peroxidation in rat liver and kidney: a comparison of green and black tea feeding. Biol Pharm Bull 18:1006–1008PubMedGoogle Scholar
  59. 59.
    Sazuka M, Murakami S, Isemura M, Satoh K, Nukiwa T (1995) Inhibitory effects of green tea infusion on in vitro invasion and in vivo metastasis of mouse lung carcinoma cells. Cancer Lett 98:27–31PubMedGoogle Scholar
  60. 60.
    Singh R, Ahmed S, Islam N, Goldberg VM, Haqqi TM (2002) Epigallocatechin-3-gallate inhibits interleukin-1beta-induced expression of nitric oxide synthase and production of nitric oxide in human chondrocytes: suppression of nuclear factor kappaB activation by degradation of the inhibitor of nuclear factor kappaB. Arthritis Rheum 46:2079–2086CrossRefPubMedGoogle Scholar
  61. 61.
    Tachibana H, Koga K, Fujimura Y, Yamada K (2004) A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol 11:380–381CrossRefPubMedGoogle Scholar
  62. 62.
    Tedeschi E, Suzuki H, Menegazzi M (2002) Antiinflammatory action of EGCG, the main component of green tea, through STAT-1 inhibition. Ann NY Acad Sci 973:435–437CrossRefPubMedGoogle Scholar
  63. 63.
    Tipoe GL, Leung TM, Hung MW, Fung ML (2007) Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection. Cardiovasc Hematol Disord Drug Targets 7:135–144PubMedGoogle Scholar
  64. 64.
    Wu CD, Wei GX (2002) Tea as a functional food for oral health. Nutrition 18:443–444CrossRefPubMedGoogle Scholar
  65. 65.
    Yamashita K, Suzuki Y, Matsui T, Yoshimaru T, Yamaki M, Suzuki-Karasaki M, Hayakawa S, Shimizu K (2000) Epigallocatechin gallate inhibits histamine release from rat basophilic leukemia (RBL-2H3) cells: role of tyrosine phosphorylation pathway. Biochem Biophys Res Commun 274:603–608CrossRefPubMedGoogle Scholar
  66. 66.
    Yang TT, Koo MW (2000) Inhibitory effect of Chinese green tea on endothelial cell-induced LDL oxidation. Atherosclerosis 148:67–73CrossRefPubMedGoogle Scholar
  67. 67.
    Yang F, de Villiers WJ, McClain CJ, Varilek GW (1998) Green tea polyphenols block endotoxin-induced tumor necrosis factor-production and lethality in a murine model. J Nutr 128:2334–2340PubMedGoogle Scholar
  68. 68.
    Zhu BH, Zhan WH, Li ZR, Wang Z, He YL, Peng JS, Cai SR, Ma JP, Zhang CH (2007) (–)-Epigallocatechin-3-gallate inhibits growth of gastric cancer by reducing VEGF production and angiogenesis. World J Gastroenterol 13:1162–1169PubMedGoogle Scholar

Copyright information

© University of Navarra 2010

Authors and Affiliations

  • Esther Melgarejo
    • 1
  • Miguel Ángel Medina
    • 1
  • Francisca Sánchez-Jiménez
    • 1
  • José Luis Urdiales
    • 2
  1. 1.Departamento de Biología Molecular y Bioquímica, Facultad de CienciasUniversidad de Málaga and CIBER de Enfermedades Raras (CIBERER)MálagaSpain
  2. 2.Departamento de Biología Molecular y Bioquímica, Facultad de CienciasUniversidad de Málaga and CIBER de Enfermedades Raras (CIBERER)MálagaSpain

Personalised recommendations