Skip to main content
Log in

HFCCW: A Novel Hybrid Filter-Clustering-Coevolutionary Wrapper Feature Selection Approach for Network Anomaly Detection

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Network anomaly detection (NAD) is a crucial Artificial Intelligence (AI)-based security solution for protecting computer networks. However, analyzing high-dimensional data is a significant impediment for NAD systems. The process of Feature Selection (FS) addresses this challenge by reducing or eliminating irrelevant or redundant features. Conventional FS algorithms face the drawbacks of diminished accuracy, elevated computational costs, and the inclusion of irrelevant and redundant features. This paper presents a novel three-fold Hybrid Filter-Clustering-Coevolutionary Wrapper (HFCCW) based FS approach to overcome these issues. The proposed method integrates filter and clustering techniques in the initial phases to prevent irrelevant and redundant features from being included. The first phase involves removing irrelevant features by employing the Fisher score filter method, followed by the application of clustering based on the Minimum Spanning Tree (MST) in the second phase. The second phase aims to eliminate redundant features and effectively narrow down the search space of the coevolutionary algorithm in the third phase. The method employed in the third phase adeptly integrates the strengths of particle swarm optimization (PSO) and binary grey wolf optimization (BGWO) techniques, effectively harmonizing the exploration and exploitation trade-off in the optimization process. The incorporation of the Levy Flight (LF) concept in the final iterations of BGWOPSO enhances the search steps of GWO during the third phase. It addresses the issue of GWO being confined to local optima. This improvement is achieved by applying BLFGWOPSO in the final phase of the proposed HFCCW approach. Empirical findings on the CICIDS2017 dataset substantiate the efficacy of the proposed method in enhancing classification accuracy, selecting optimal feature subsets with fewer features, reducing computing costs and improving convergence rates. Furthermore, the proposed method achieves a favorable trade-off between accuracy and computing time when contrasted with state-of-the-art methods such as filter, metaheuristic-based wrapper, and hybrid FS approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data Availability

The research has been conducted only with openly available datasets and will be publicly available in https://www.unb.ca/cic/datasets/ids-2017.html

References

  1. Sharma N, Arora B (2021) Review of machine learning techniques for network traffic classification. SSRN Electron J. https://doi.org/10.2139/ssrn.3747605

    Article  Google Scholar 

  2. Shrivas AK, Dewangan AK (2014) An ensemble model for classification of attacks with feature selection based on KDD99 and NSL-KDD data set. Int J Comput Appl 99(15):8–13. https://doi.org/10.5120/17447-5392

    Article  Google Scholar 

  3. Panda M, Abraham A, Patra MR (2015) Hybrid intelligent systems for detecting network intrusions. Secur Commun Networks 8(16):2741–2749. https://doi.org/10.1002/SEC.592

    Article  Google Scholar 

  4. Bostani H, Sheikhan M (2017) Hybrid of binary gravitational search algorithm and mutual information for feature selection in intrusion detection systems. Soft Comput 21(9):2307–2324. https://doi.org/10.1007/S00500-015-1942-8/TABLES/9

    Article  Google Scholar 

  5. Sharma N, Arora B (2021) Data mining and machine learning techniques for malware detection. Adv Intell Syst Comput 1187:557–567. https://doi.org/10.1007/978-981-15-6014-9_66

    Article  Google Scholar 

  6. Liu D et al.. Opprentice: Towards practical and automatic anomaly detection through machine learning. Proc. ACM SIGCOMM Internet Meas. Conf. IMC, vol. 2015-October, pp. 211–224, Oct. 2015, doi: https://doi.org/10.1145/2815675.2815679.

  7. Hoque N, Bhattacharyya DK, Kalita JK (2014) MIFS-ND: A mutual information-based feature selection method. Expert Syst Appl 41(14):6371–6385. https://doi.org/10.1016/J.ESWA.2014.04.019

    Article  Google Scholar 

  8. Yang XS, Deb S, Mishra SK (2018) Multi-species cuckoo search algorithm for global optimization. Cognit Comput 10(6):1085–1095. https://doi.org/10.1007/S12559-018-9579-4/TABLES/7

    Article  Google Scholar 

  9. Kim S, Xing EP (2009) Tree-guided group lasso for multi-response regression with structured sparsity, with an application to eQTL mapping. Ann Appl Stat 6(3):1095–1117. https://doi.org/10.1214/12-AOAS549

    Article  MathSciNet  Google Scholar 

  10. Li B, Wang Q, Hu J (2011) Feature subset selection: a correlation-based SVM filter approach. IEEJ Trans Electr Electron Eng 6(2):173–179. https://doi.org/10.1002/TEE.20641

    Article  Google Scholar 

  11. Vergara JR, Estévez PA (2014) A review of feature selection methods based on mutual information. Neural Comput Appl 24(1):175–186. https://doi.org/10.1007/S00521-013-1368-0/TABLES/4

    Article  Google Scholar 

  12. Shen S, Sun Y, Gao X, Qiu J, Tian Z (2019) A correlation-change based feature selection method for IoT equipment anomaly detection. Appl Sci 9(3):437. https://doi.org/10.3390/app9030437

    Article  Google Scholar 

  13. Yap BW, Ibrahim N, Hamid HA, Rahman SA, Fong S (2018) Feature selection methods: Case of filter and wrapper approaches for maximising classification accuracy, pertanika J. Sci. Technol..

  14. Molina D, LaTorre A, Herrera F (2018) An insight into bio-inspired and evolutionary algorithms for global optimization: review, analysis, and lessons learnt over a decade of competitions. Cognit Comput 10(4):517–544. https://doi.org/10.1007/S12559-018-9554-0/FIGURES/4

    Article  Google Scholar 

  15. Al-Thanoon NA, Algamal ZY, Qasim OS (2021) Feature selection based on a crow search algorithm for big data classification. Chemom Intell Lab Syst 212:104288. https://doi.org/10.1016/J.CHEMOLAB.2021.104288

    Article  Google Scholar 

  16. Kahya MA, Altamir SA, Algamal ZY, Kahya MA, Altamir SA, Algamal ZY (2020) Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numer Algebr Control Optim 11(1):87–98. https://doi.org/10.3934/NACO.2020017

    Article  MathSciNet  Google Scholar 

  17. J. Mani Tripathi, S. Kumar Mallik -, O. Saber Qasim, and Z. Yahya Algamal, “Variable selection in Gamma regression model using binary gray Wolf optimization algorithm Protection coordination of DOCRs for different modes of microgrid operation Variable selection in Gamma regression model using binary gray Wolf optimization algorithm 1) Niam Abdulmunim Al-Thanoon, 2),” J. Phys. Conf. Ser., vol. 1591, p. 12036, 2020, doi: https://doi.org/10.1088/1742-6596/1591/1/012036.

  18. Deb K (1999) An introduction to genetic algorithms. Sadhana 24(4–5):293–315. https://doi.org/10.1007/BF02823145

    Article  MathSciNet  Google Scholar 

  19. R. Eberhart and J. Kennedy. New optimizer using particle swarm theory, Proc. Int. Symp. Micro Mach. Hum. Sci., pp. 39–43, 1995, doi: https://doi.org/10.1109/MHS.1995.494215.

  20. M. Dorigo and G. Di Caro. Ant colony optimization: A new meta-heuristic. Proc. 1999 Congr. Evol. Comput. CEC 1999, vol. 2, pp. 1470–1477, 1999, doi: https://doi.org/10.1109/CEC.1999.782657.

  21. Storn R, Price K (1997) Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359. https://doi.org/10.1023/A:1008202821328/METRICS

    Article  MathSciNet  Google Scholar 

  22. Yang XS, Deb S (2010) Engineering optimisation by cuckoo search. Int J Math Model Numer Optim 1(4):330–343. https://doi.org/10.1504/IJMMNO.2010.035430

    Article  Google Scholar 

  23. X. S. Yang. Firefly algorithms for multimodal optimization, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5792 LNCS, pp. 169–178, 2009, doi: https://doi.org/10.1007/978-3-642-04944-6_14/COVER.

  24. Yang XS (2011) Bat algorithm for multi-objective optimisation. Int J Bio-Inspired Comput 3(5):267–274. https://doi.org/10.1504/IJBIC.2011.042259

    Article  Google Scholar 

  25. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/J.ADVENGSOFT.2013.12.007

    Article  Google Scholar 

  26. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/J.ADVENGSOFT.2016.01.008

    Article  Google Scholar 

  27. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/J.ADVENGSOFT.2017.07.002

    Article  Google Scholar 

  28. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872. https://doi.org/10.1016/J.FUTURE.2019.02.028

    Article  Google Scholar 

  29. Purushothaman R, Rajagopalan SP, Dhandapani G (2020) Hybridizing gray wolf optimization (GWO) with grasshopper optimization algorithm (GOA) for text feature selection and clustering. Appl Soft Comput 96:106651. https://doi.org/10.1016/J.ASOC.2020.106651

    Article  Google Scholar 

  30. Song XF, Zhang Y, Guo YN, Sun XY, Wang YL (2020) Variable-Size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data. IEEE Trans Evol Comput 24(5):882–895. https://doi.org/10.1109/TEVC.2020.2968743

    Article  Google Scholar 

  31. Ansari G, Ahmad T, Doja MN (2019) Hybrid filter-wrapper feature selection method for sentiment classification. Arab J Sci Eng 44(11):9191–9208. https://doi.org/10.1007/S13369-019-04064-6/TABLES/2

    Article  Google Scholar 

  32. Kamarudin MH, Maple C, Watson T (2019) Hybrid feature selection technique for intrusion detection system. Int J High Perform Comput Netw 13(2):232. https://doi.org/10.1504/IJHPCN.2019.097503

    Article  Google Scholar 

  33. Chaudhuri A, Sahu TP (2021) A hybrid feature selection method based on Binary Jaya algorithm for micro-array data classification. Comput Electr Eng 90:106963. https://doi.org/10.1016/J.COMPELECENG.2020.106963

    Article  Google Scholar 

  34. Sadeghian Z, Akbari E, Nematzadeh H (2021) A hybrid feature selection method based on information theory and binary butterfly optimization algorithm. Eng Appl Artif Intell 97:104079. https://doi.org/10.1016/J.ENGAPPAI.2020.104079

    Article  Google Scholar 

  35. Kundu R, Mallipeddi R (2022) HFMOEA: a hybrid framework for multi-objective feature selection. J Comput Des Eng 9(3):949–965. https://doi.org/10.1093/JCDE/QWAC040

    Article  Google Scholar 

  36. S. A. B. P, C. S. R. Annavarapu, and S. Dara, “Clustering-based hybrid feature selection approach for high dimensional microarray data,” Chemom. Intell. Lab. Syst., vol. 213, p. 104305, Jun. 2021, doi: https://doi.org/10.1016/J.CHEMOLAB.2021.104305.

  37. Song XF, Zhang Y, Gong DW, Gao XZ (2022) A Fast Hybrid feature selection based on correlation-guided clustering and particle swarm optimization for high-dimensional data. IEEE Trans Cybern 52(9):9573–9586. https://doi.org/10.1109/TCYB.2021.3061152

    Article  Google Scholar 

  38. S. Yoshida et al.. Multi-filter clustering fusion for feature selection in rotating machinery fault classification. Sensors 2022, Vol. 22, Page 2192, vol. 22, no. 6, p. 2192, Mar. 2022, doi: https://doi.org/10.3390/S22062192.

  39. Al-Tashi Q, Abdul Kadir SJ, Rais HM, Mirjalili S, Alhussian H (2019) Binary optimization using hybrid grey wolf optimization for feature selection. IEEE Access 7, 39496–39508. doi: https://doi.org/10.1109/ACCESS.2019.2906757

  40. Mohammadzadeh H, Gharehchopogh FS (2021) A novel hybrid whale optimization algorithm with flower pollination algorithm for feature selection: case study Email spam detection. Comput Intell 37(1):176–209. https://doi.org/10.1111/COIN.12397

    Article  MathSciNet  Google Scholar 

  41. Kareem SS, Mostafa RR, Hashim FA, El-Bakry HM (2022) An effective feature selection model using hybrid metaheuristic algorithms for IoT intrusion detection. Sensors 22(4):1396. https://doi.org/10.3390/s22041396

    Article  Google Scholar 

  42. Abdelhamid AA et al (2023) Innovative feature selection method based on hybrid sine cosine and dipper throated optimization algorithms. IEEE Access 11:79750–79776. https://doi.org/10.1109/ACCESS.2023.3298955

    Article  Google Scholar 

  43. Pirgazi J, Alimoradi M, Abharian TE, Olyaee MH (2019) An efficient hybrid filter-wrapper metaheuristic-based gene selection method for high dimensional datasets. Sci Rep. https://doi.org/10.1038/s41598-019-54987-1

    Article  Google Scholar 

  44. Mundra PA, Rajapakse JC (2010) SVM-RFE with MRMR filter for gene selection. IEEE Trans Nanobiosci 9(1):31–37. https://doi.org/10.1109/TNB.2009.2035284

    Article  Google Scholar 

  45. Hancer E, Xue B, Zhang M (2018) Differential evolution for filter feature selection based on information theory and feature ranking. Knowledge-Based Syst 140:103–119. https://doi.org/10.1016/J.KNOSYS.2017.10.028

    Article  Google Scholar 

  46. Djellali H, Zine NG, Azizi N (2016) Two stages feature selection based on filter ranking methods and SVMRFE on medical applications. Lect Notes Networks Syst 1:281–293. https://doi.org/10.1007/978-3-319-33410-3_20/COVER

    Article  Google Scholar 

  47. Yin Y et al (2023) IGRF-RFE: a hybrid feature selection method for MLP-based network intrusion detection on UNSW-NB15 dataset. J Big Data 10(1):1–26. https://doi.org/10.1186/S40537-023-00694-8/TABLES/9

    Article  Google Scholar 

  48. Dey AK, Gupta GP, Sahu SP (2023) Hybrid meta-heuristic based feature selection mechanism for cyber-attack detection in IoT-enabled Networks. Procedia Comput Sci 218:318–327. https://doi.org/10.1016/J.PROCS.2023.01.014

    Article  Google Scholar 

  49. Xue Y, Zhu H, Neri F (2023) A feature selection approach based on NSGA-II with ReliefF. Appl Soft Comput 134:109987. https://doi.org/10.1016/j.asoc.2023.109987

    Article  Google Scholar 

  50. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182. https://doi.org/10.5555/944919.944968

    Article  Google Scholar 

  51. Li M, Wang H, Yang L, Liang Y, Shang Z, Wan H (2020) Fast hybrid dimensionality reduction method for classification based on feature selection and grouped feature extraction. Expert Syst Appl 150:113277. https://doi.org/10.1016/J.ESWA.2020.113277

    Article  Google Scholar 

  52. Rajab M, Wang D (2020) Practical challenges and recommendations of filter methods for feature selection. J. Inf. Knowl.. Manag., 19(1), 2040019. doi:https://doi.org/10.1142/S0219649220400195.

  53. Singh B, Sankhwar JS, Vyas OP (2015) Optimization of feature selection method for high dimensional data using fisher score and minimum spanning tree. 11th IEEE India Conf. Emerg. Trends Innov. Technol. INDICON 2014. doi:https://doi.org/10.1109/INDICON.2014.7030450.

  54. Xu Z, Xuan J, Liu J, Cui X (2016) MICHAC: Defect prediction via feature selection based on Maximal Information Coefficient with Hierarchical Agglomerative Clustering. 2016 IEEE 23rd Int. Conf. Softw. Anal. Evol. Reengineering, SANER 2016, vol. 2016-January, pp. 370–381. doi:https://doi.org/10.1109/SANER.2016.34.

  55. Arun Kumar R, Vijay Franklin J, Koppula N (2022) A comprehensive survey on metaheuristic algorithm for feature selection techniques. Mater Today: Proc 64:435–441. https://doi.org/10.1016/j.matpr.2022.04.803

    Article  Google Scholar 

  56. Singh N, Singh SB (2017) A novel hybrid GWO-SCA approach for optimization problems. Eng Sci Technol Int J 20(6):1586–1601. https://doi.org/10.1016/J.JESTCH.2017.11.001

    Article  Google Scholar 

  57. Kitonyi PM, Segera DR (2021) Hybrid gradient descent grey wolf optimizer for optimal feature selection. Biomed Res. Int., , 2021, doi: https://doi.org/10.1155/2021/2555622.

  58. Otair M, Ibrahim OT, Abualigah L, Altalhi M, Sumari P (2022) An enhanced grey wolf optimizer based particle swarm optimizer for intrusion detection system in wireless sensor networks. Wirel Networks 28(2):721–744. https://doi.org/10.1007/S11276-021-02866-X/METRICS

    Article  Google Scholar 

  59. Robnik-Šikonja M, Kononenko I (2003) Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn 53(1–2):23–69. https://doi.org/10.1023/A:1025667309714/METRICS

    Article  Google Scholar 

  60. Alalga A, Benabdeslem K, Taleb N (2016) Soft-constrained Laplacian score for semi-supervised multi-label feature selection. Knowl Inf Syst 47(1):75–98. https://doi.org/10.1007/S10115-015-0841-8/METRICS

    Article  Google Scholar 

  61. Kumar A, Yin B, Shaikh AM, Ali M, Wei W (2022) CorrNet: pearson correlation based pruning for efficient convolutional neural networks. Int J Mach Learn Cybern 13(12):3773–3783. https://doi.org/10.1007/S13042-022-01624-5/FIGURES/7

    Article  Google Scholar 

  62. Sumaiya Thaseen I, Aswani Kumar C (2017) Intrusion detection model using fusion of chi-square feature selection and multi class SVM. J. King Saud Univ. - Comput. Inf. Sci. 29(4), 462–472. doi:https://doi.org/10.1016/J.JKSUCI.2015.12.004.

  63. Nie F, Xiang S, Jia Y, Zhang C, Yan S (2008) Trace ratio criterion for feature selection. In ‘Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence. AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008

  64. Li J, et al., Feature selection: A data perspective. ACM Comput. Surv., 50(6), 2017, doi:https://doi.org/10.1145/3136625

  65. Al-Ani A, Deriche M (2002) Feature selection using a mutual information based measure. Proc - Int Conf Pattern Recognit 16(4):82–85. https://doi.org/10.1109/ICPR.2002.1047405

    Article  Google Scholar 

  66. M. K. Publishers. Programs for Machine Learning, 2004.

  67. Jiang B-N, Ding X-Q, Ma L-T, He Y, Wang T, Xie W-W. A hybrid feature selection algorithm: combination of symmetrical uncertainty and genetic algorithms. 2008.

  68. I. Kononenko, “Estimating attributes: Analysis and extensions of RELIEF,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 784 LNCS, pp. 171–182, 1994, doi: https://doi.org/10.1007/3-540-57868-4_57/COVER.

  69. Heidari AA, Pahlavani P (2017) An efficient modified grey wolf optimizer with Lévy flight for optimization tasks. Appl Soft Comput 60:115–134. https://doi.org/10.1016/J.ASOC.2017.06.044

    Article  Google Scholar 

  70. Faris H, Aljarah I, Al-Betar MA, Mirjalili S (2018) Grey wolf optimizer: a review of recent variants and applications. Neural Comput Appl 30(2):413–435. https://doi.org/10.1007/S00521-017-3272-5/FIGURES/9

    Article  Google Scholar 

  71. Kennedy J, Eberhart R. Particle swarm optimization. Proc. ICNN’95 - Int. Conf. Neural Networks, vol. 4, pp. 1942–1948. doi:https://doi.org/10.1109/ICNN.1995.488968.

  72. Arun Prabha K, Karthikeyani Visalakshi N (2014). Improved particle swarm optimization based K-Means clustering. Proc. - 2014 Int. Conf. Intell. Comput. Appl. ICICA 2014, pp. 59–63. doi:https://doi.org/10.1109/ICICA.2014.21

  73. Singh N, Singh SB (2017). Hybrid algorithm of particle swarm optimization and grey wolf optimizer for improving convergence performance. J. Appl. Math., 2017. doi:https://doi.org/10.1155/2017/2030489.

  74. Talbi E-G (2009) Metaheuristics: from desing to implementation. John Wiley & Sons, Inc. p. 624, 2009, Accessed: Mar. 31, 2023. [Online]. Available: https://www.wiley.com/en-us/Metaheuristics%3A+From+Design+to+Implementation+-p-9780470278581.

  75. Talbi EG (2002) A taxonomy of hybrid metaheuristics. J Heuristics 8(5):541–564. https://doi.org/10.1023/A:1016540724870/METRICS

    Article  Google Scholar 

  76. “IDS 2017 | Datasets | Research | Canadian Institute for Cybersecurity | UNB.” https://www.unb.ca/cic/datasets/ids-2017.html (accessed May 25, 2022).

  77. Sharafaldin I, Lashkari AH, Ghorbani AA (2018) Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSP 2018 - Proc. 4th Int. Conf. Inf. Syst. Secur. Priv., vol. 2018-January, pp. 108–116. doi:https://doi.org/10.5220/0006639801080116.

  78. Dash T (2017) A study on intrusion detection using neural networks trained with evolutionary algorithms. Soft Comput 21(10):2687–2700. https://doi.org/10.1007/S00500-015-1967-Z/TABLES/11

    Article  Google Scholar 

  79. Khammassi C, Krichen S (2020) A NSGA2-LR wrapper approach for feature selection in network intrusion detection. Comput Networks 172:107183. https://doi.org/10.1016/J.COMNET.2020.107183

    Article  Google Scholar 

  80. “(1) (PDF) Evaluating the Impact of Feature Selection Methods on the Performance of the Machine Learning Models in Detecting DDoS Attacks.” https://www.researchgate.net/publication/343850781_Evaluating_the_Impact_of_Feature_Selection_Methods_on_the_Performance_of_the_Machine_Learning_Models_in_Detecting_DDoS_Attacks (accessed Mar. 28, 2023).

  81. Ghatasheh N, Faris H, Aljarah I, Al-Sayyed RMH (2019) Optimizing Software Effort Estimation Models Using Firefly Algorithm. J Softw Eng Appl 08(03):133–142. https://doi.org/10.4236/jsea.2015.83014

    Article  Google Scholar 

  82. Chen H, Jiao S, Heidari AA, Wang M, Chen X, Zhao X (2019) An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models. Energy Convers Manag 195:927–942. https://doi.org/10.1016/J.ENCONMAN.2019.05.057

    Article  Google Scholar 

  83. Hu P, Pan JS, Chu SC (2020) Improved binary grey wolf optimizer and its application for feature selection. Knowledge-Based Syst 195:105746. https://doi.org/10.1016/J.KNOSYS.2020.105746

    Article  Google Scholar 

  84. Mirjalili S, Lewis A (2013) S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evol Comput 9:1–14. https://doi.org/10.1016/J.SWEVO.2012.09.002

    Article  Google Scholar 

  85. Chechkin AV, Metzler R, Klafter J, Gonchar VY (2008) Introduction to the Theory of Lévy Flights. Anomalous Transp. Found. Appl., 129–162. doi:https://doi.org/10.1002/9783527622979.CH5.

  86. Yang XS, Deb S (2013) Multiobjective cuckoo search for design optimization. Comput Oper Res 40(6):1616–1624. https://doi.org/10.1016/J.COR.2011.09.026

    Article  MathSciNet  Google Scholar 

  87. Emary E, Zawbaa HM, Hassanien AE (2016) Binary grey wolf optimization approaches for feature selection. Neurocomputing 172:371–381. https://doi.org/10.1016/J.NEUCOM.2015.06.083

    Article  Google Scholar 

  88. X. Yin and J. Han, “CPAR: Classification based on Predictive Association Rules *.

  89. Mafarja M, Qasem A, Heidari AA, Aljarah I, Faris H, Mirjalili S (2020) Efficient hybrid nature-inspired binary optimizers for feature selection. Cognit Comput 12(1):150–175. https://doi.org/10.1007/S12559-019-09668-6/FIGURES/12

    Article  Google Scholar 

  90. Kumar GH, Sreenubabu C (2015) A clustering-based feature subset selection algorithm for high dimensional data.

  91. Meidani K, Hemmasian AP, Mirjalili S, Barati Farimani A (2022). Adaptive grey wolf optimizer, Neural Comput. Appl. 34(10), 7711–7731. doi:https://doi.org/10.1007/S00521-021-06885-9.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niharika Sharma.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Arora, B. HFCCW: A Novel Hybrid Filter-Clustering-Coevolutionary Wrapper Feature Selection Approach for Network Anomaly Detection. Int. J. Mach. Learn. & Cyber. (2024). https://doi.org/10.1007/s13042-024-02187-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13042-024-02187-3

Keywords

Navigation