Skip to main content
Log in

A novel semantic feature enhancement network for extracting lake water from remote sensing images

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

The automatic lake water extraction method based on semantic segmentation is a research hotspot in the field of remote sensing image processing. In remote sensing images, the presence of complex noise information at the lake boundary hinders the normal expression of boundary information, which leads to methods cannot extract a coherent lake boundary. Moreover, partial small-scale lakes’ texture features are weak and easily masked by the background information. To address the above issues, an end-to-end semantic segmentation network is designed. The network uses a symmetric encoder-decoder architecture to extract lake water in remote sensing images. On the one hand, a directional noise reduction filtering algorithm is proposed to reduce the impact of noise information on the network segmentation process. The algorithm utilizes a preset directional guide map to guide the nonlinear propagation of boundary noise and suppress low-contrast halo artifacts in the image, thereby better preserving the boundary sharpness of the lake. On the other hand, for the problem of missing small-scale lakes, an attention gate compression module is embedded in the skip connection. This module can adaptively integrate the correlation features between different ground objects, and selectively assign more attention to small-scale lakes, thereby improving the network’s ability to recognize such lakes. In the experimental results, our method can produce more accurate lake water extraction results than the current mainstream methods. Besides it has an excellent performance in accurately identifying lake boundaries and small-scale lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The dataset presented in this study are available on request from the corresponding author.

References

  1. Lian Guofei et al (2022) Towards unified on-road object detection and depth estimation from a single image. Int J Mach Learn Cybernet. https://doi.org/10.1007/s13042-021-01444-z

    Article  Google Scholar 

  2. Shamki ZAM, Rabee F (2022) Image mining technique using Hadoop map reduce over distributed multi-node computers connections. Al-Salam J Eng Technol 1(2):18–24. https://doi.org/10.55145/ajest.2022.01.02.004

  3. Qadir MS, Bilgin G (2023) Active learning with Bayesian CNN using the BALD method for hyperspectral image classification. Mesopotamian J Big Data https://doi.org/10.58496/MJBD/2023/008

  4. Li S, Liu J, Song Z (2022) Brain tumor segmentation based on region of interest-aided localization and segmentation U-Net. Int J Mach Learn Cybern 13(9):2435–2445

    Article  Google Scholar 

  5. Mohanad Ghazi Yaseen, Mohammad Aljanabi, Ahmed Hussein Ali, Saad Abbas Abd (2022) Current cutting-edge research in computer science. Mesopotamian J Comput Sci https://doi.org/10.58496/MJCSC/2022/001

  6. Miao Z, Fu K, Sun H, Sun X, Yan M (2018) Automatic water-body segmentation from high-resolution satellite images via deep networks. IEEE Geosci Remote Sens Lett 15(4):602–606. https://doi.org/10.1109/LGRS.2018.2794545

    Article  Google Scholar 

  7. Wang R et al (2019) Remote sensing semantic segregation for water information extraction: optimization of samples via training error performance. IEEE Access 7:13383–13395. https://doi.org/10.1109/ACCESS.2019.2894099

    Article  Google Scholar 

  8. Duan L, Hu X (2019) Multiscale refinement network for water-body segmentation in high-resolution satellite imagery. IEEE Geosci Remote Sens Lett 17(4):686–690. https://doi.org/10.1109/LGRS.2019.2926412

    Article  Google Scholar 

  9. Wang Y, Li Z, Zeng C, Xia G, Shen H (2020) An urban water extraction method combining deep learning and Google Earth engine. IEEE J Select Topics Appl Earth Observ Remote Sens 13:769–782. https://doi.org/10.1109/JSTARS.2020.2971783

    Article  Google Scholar 

  10. Liu Y, Key J, Mahoney R (2016) Sea and freshwater ice concentration from VIIRS on Suomi NPP and the future JPSS satellites. Remote Sens 8(6):523. https://doi.org/10.3390/rs8060523

    Article  Google Scholar 

  11. Rashid T, Bin Hamzah M, Rasheed M, Jaber A, Sarhan M, Aldaraji M, Saidani T (2023) Image segmentation for animals in the wild using scilab software. Al-Salam J Eng Technol 2(2):72–77. https://doi.org/10.55145/ajest.2023.02.02.009

  12. Zheng Y, Zhang X, Hou B, Liu G (2013) Using combined difference image and k -means clustering for SAR image change detection. IEEE Geosci Remote Sens Lett 11(3):691–695. https://doi.org/10.1109/LGRS.2013.2275738

    Article  Google Scholar 

  13. Singh B, Sihag P, Singh K (2017) Modelling of impact of water quality on infiltration rate of soil by random forest regression. Modeling Earth Syst Environ 3:999–1004. https://doi.org/10.1007/s40808-017-0347-3

    Article  Google Scholar 

  14. McFeeters SK (1996) The use of the normalized difference water index (NDWI) in the delineation of open water features. Int J Remote Sens 17(7):1425–1432. https://doi.org/10.1080/01431169608948714

    Article  Google Scholar 

  15. Wang C, Jia M, Chen N, Wang W (2018) Long-term surface water dynamics analysis based on Landsat imagery and the Google Earth Engine platform: a case study in the middle Yangtze River Basin. Remote Sens 10(10):1635. https://doi.org/10.3390/rs10101635

    Article  Google Scholar 

  16. Zhang J et al (2020) Water body detection in high-resolution SAR images with cascaded fully-convolutional network and variable focal loss. IEEE Trans Geosci Remote Sens 59(1):316–332. https://doi.org/10.1109/TGRS.2020.2999405

    Article  Google Scholar 

  17. Li L et al (2019) Water body extraction from very high spatial resolution remote sensing data based on fully convolutional networks. Remote Sens 11(10):1162. https://doi.org/10.3390/rs11101162

    Article  Google Scholar 

  18. Li M et al (2021) A deep learning method of water body extraction from high resolution remote sensing images with multisensors. IEEE J Select Topics Appl Earth Observ Remote Sens 14:3120–3132. https://doi.org/10.1109/JSTARS.2021.3060769

    Article  Google Scholar 

  19. Al-Khaldi MM et al (2021) Inland water body mapping using CYGNSS coherence detection. IEEE Trans Geosci Remote Sens 59(9):7385–7394. https://doi.org/10.1109/TGRS.2020.3047075

    Article  Google Scholar 

  20. Liang X, Zhang Y, Zhang J (2021) Water retrieval embedded attention network with multiscale receptive fields for hyperspectral image refined classification. IEEE Trans Geosci Remote Sens 60:1–22. https://doi.org/10.1109/TGRS.2021.3091985

    Article  Google Scholar 

  21. Lu M, Fang L, Li M, Zhang B, Zhang Y, Ghamisi P (2022) NFANet: a novel method for weakly supervised water extraction from high-resolution remote-sensing imagery. IEEE Trans Geosci Remote Sens 60:1–14. https://doi.org/10.1109/TGRS.2022.3140323

    Article  Google Scholar 

  22. Feng W, Sui H, Huang W, Xu C, An K (2018) Water body extraction from very high-resolution remote sensing imagery using deep U-Net and a superpixel-based conditional random field model. IEEE Geosci Remote Sens Lett 16(4):618–622. https://doi.org/10.1109/LGRS.2018.2879492

    Article  Google Scholar 

  23. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. Int Confer Med image Comput Comput Asssist Intervent. https://doi.org/10.1007/978-3-319-24574-4_28

    Article  Google Scholar 

  24. Wang Z, Gao X, Zhang Y (2021) HA-Net: a lake water body extraction network based on hybrid-scale attention and transfer learning. Remote Sens 13(20):4121. https://doi.org/10.3390/rs13204121

    Article  Google Scholar 

  25. Weng L et al (2020) Water areas segmentation from remote sensing images using a separable residual segnet network. ISPRS Int J Geo Inf 9(4):256. https://doi.org/10.3390/ijgi9040256

    Article  Google Scholar 

  26. Li Z, Wang R, Zhang W, Hu FM, Meng LK (2019) Multiscale features supported DeepLabV3+ optimization scheme for accurate water semantic segmentation. IEEE Access 7:155787–155804. https://doi.org/10.1109/ACCESS.2019.2949635

    Article  Google Scholar 

  27. Chen L et al (2017) Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848. https://doi.org/10.1109/TPAMI.2017.2699184

    Article  Google Scholar 

  28. Zhong HF, Sun HM, Han DN, Li ZH, Jia RS (2022) Lake water body extraction of optical remote sensing images based on semantic segmentation. Appl Intell 52:17974–17989. https://doi.org/10.1007/s10489-022-03345-2

    Article  Google Scholar 

  29. Guo H et al (2020) A multi-scale water extraction convolutional neural network (MWEN) method for GaoFen-1 remote sensing images. ISPRS Int J Geo Inf 9(4):189. https://doi.org/10.3390/ijgi9040189

    Article  Google Scholar 

  30. Zhang X, Li J, Hua Z (2022) MRSE-Net: multiscale residuals and SE-attention network for water body segmentation from satellite images. IEEE J Select Topics Appl Earth Observ Remote Sens 15:5049–5064. https://doi.org/10.1109/JSTARS.2022.3185245

    Article  Google Scholar 

  31. Lyu X, Fang Y, Tong B, Li X, Zeng T (2022) Multiscale normalization attention network for water body extraction from remote sensing imagery. Remote Sens 14(19):4983. https://doi.org/10.3390/rs14194983

    Article  Google Scholar 

  32. Ding L, Tang H, Bruzzone L (2020) LANet: Local attention embedding to improve the semantic segmentation of remote sensing images. IEEE Trans Geosci Remote Sens 59(1):426–435. https://doi.org/10.1109/TGRS.2020.2994150

    Article  Google Scholar 

  33. Zhu Q et al (2020) MAP-Net: multiple attending path neural network for building footprint extraction from remote sensed imagery. IEEE Trans Geosci Remote Sens 59(7):6169–6181. https://doi.org/10.1109/TGRS.2020.3026051

    Article  Google Scholar 

  34. Li R et al (2021) Multiattention network for semantic segmentation of fine-resolution remote sensing images. IEEE Trans Geosci Remote Sens 60:1–13. https://doi.org/10.1109/TGRS.2021.3093977

    Article  Google Scholar 

  35. Zhang X et al (2020) ICENET: A semantic segmentation deep network for river ice by fusing positional and channel-wise attentive features. Remote Sens 12(2):221. https://doi.org/10.3390/rs12020221

    Article  MathSciNet  Google Scholar 

  36. Zhang Z et al (2021) Rich CNN Features for water-body segmentation from very high resolution aerial and satellite imagery. Remote Sens 13(10):1912. https://doi.org/10.3390/rs13101912

    Article  Google Scholar 

  37. Hu K, Li M, Xia M, Lin H (2022) Multi-scale feature aggregation network for water area segmentation. Remote Sens 14(1):206. https://doi.org/10.3390/rs14010206

    Article  Google Scholar 

  38. Dosovitskiy A et al (2020) An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929

  39. Vaswani A et al (2017) Attention is all you need. Adv Neural Inform Process Syst 30

  40. Chen J et al (2021) Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306

  41. Cao H et al (2022) Swin-unet: Unet-like pure transformer for medical image segmentation. European conference on computer vision. Cham: Springer Nature Switzerland pp: 205–218

  42. Chen B et al (2021) Transattunet: multi-level attention-guided u-net with transformer for medical image segmentation. arXiv preprint arXiv:2107.05274

  43. Xie E et al (2021) SegFormer: Simple and efficient design for semantic segmentation with transformers. Adv Neural Inf Process Syst 34:12077–12090

    Google Scholar 

  44. Cai H, Li J, Hu M, Gan C, Han S (2022) EfficientViT: lightweight multi-scale attention for on-device semantic segmentation. arXiv preprint arXiv:2205.14756

  45. Gao L et al (2021) STransFuse: Fusing swin transformer and convolutional neural network for remote sensing image semantic segmentation. IEEE J Select Topics Appl Earth Observ Remote Sens 14:10990–11003. https://doi.org/10.1109/JSTARS.2021.3119654

    Article  Google Scholar 

  46. Song P et al (2022) CTMFNet: CNN and transformer multi-scale fusion network of remote sensing urban scene imagery. IEEE Trans Geosci Remote Sens 61:1–14. https://doi.org/10.1109/TGRS.2022.3232143

    Article  Google Scholar 

  47. Li Y et al (2023) RCCT-ASPPNet: dual-encoder remote image segmentation based on transformer and ASPP. Remote Sens 15(2):379. https://doi.org/10.3390/rs15020379

    Article  Google Scholar 

  48. Zhong HF, Sun Q, Sun HM, Jia RS (2022) NT-net: a semantic segmentation network for extracting lake water bodies from optical remote sensing images based on transformer. IEEE Trans Geosci Remote Sens 60:1–13. https://doi.org/10.1109/TGRS.2022.3197402

    Article  Google Scholar 

  49. Li S, Zou Y, Wang G, Lin C (2023) Infrared and visible image fusion method based on a principal component analysis network and image pyramid. Remote Sens 15(3):685. https://doi.org/10.3390/rs15030685

    Article  Google Scholar 

  50. He K, Sun J, Tang X (2012) Guided image filtering. IEEE Trans Pattern Anal Mach Intell 35(6):1397–1409. https://doi.org/10.1109/TPAMI.2012.213

    Article  Google Scholar 

  51. Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. Proceedings of the IEEE conference on computer vision and pattern recognition

  52. He K et al (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. Proceedings of the IEEE international conference on computer vision. pp: 1026–1034

  53. Schmidt-Hieber J (2020) Nonparametric regression using deep neural networks with ReLU activation function. 48(4):1875–1897. https://doi.org/10.1214/19-AOS1875

  54. Liu Z et al (2021) Swin transformer: hierarchical vision transformer using shifted windows. Proceedings of the IEEE/CVF international conference on computer vision. pp: 10012–10022

  55. He X et al (2022) Swin transformer embedding UNet for remote sensing image semantic segmentation. IEEE Trans Geosci Remote Sens 60:1–15. https://doi.org/10.1109/TGRS.2022.3144165

    Article  Google Scholar 

  56. Zhang J et al (2020) A contextual bidirectional enhancement method for remote sensing image object detection. IEEE J Select Topics Appl Earth Observ Remote Sens 13:4518–4531. https://doi.org/10.1109/JSTARS.2020.3015049

    Article  Google Scholar 

  57. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980

  58. Wang Yu, Li J (2016) Credible intervals for precision and recall based on a K-fold cross-validated beta distribution. Neural Comput 28(8):1694–1722. https://doi.org/10.1162/NECO_a_00857

    Article  MathSciNet  Google Scholar 

  59. Wong T-T, Yeh P-Y (2019) Reliable accuracy estimates from k-fold cross validation. IEEE Trans Knowl Data Eng 32(8):1586–1594. https://doi.org/10.1109/TKDE.2019.2912815

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for collaborative funding support from the Natural Science Foundation of Shandong Province, PR. China (ZR2022ME091).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Mei Sun or Rui-Sheng Jia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, RR., Sun, HM., Wang, RX. et al. A novel semantic feature enhancement network for extracting lake water from remote sensing images. Int. J. Mach. Learn. & Cyber. (2024). https://doi.org/10.1007/s13042-024-02133-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13042-024-02133-3

Keywords

Navigation