Skip to main content
Log in

An attentive-based generative model for medical image synthesis

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Magnetic resonance (MR) and computer tomography (CT) imaging are valuable tools for diagnosing diseases and planning treatment. However, limitations such as radiation exposure and cost can restrict access to certain imaging modalities. To address this issue, medical image synthesis can generate one modality from another, but many existing models struggle with high-quality image synthesis when multiple slices are present in the dataset. This study proposes an attention-based dual contrast generative model, called ADC-cycleGAN, which can synthesize medical images from unpaired data with multiple slices. The model integrates a dual contrast loss term with the CycleGAN loss to ensure that the synthesized images are distinguishable from the source domain. Additionally, an attention mechanism is incorporated into the generators to extract informative features from both channel and spatial domains. To improve performance when dealing with multiple slices, the K-means algorithm is used to cluster the dataset into K groups, and each group is used to train a separate ADC-cycleGAN. Experimental results demonstrate that the proposed ADC-cycleGAN model produces comparable samples to other state-of-the-art generative models, achieving the highest PSNR and SSIM values of 19.04385 and 0.68551, respectively. We publish the code at https://github.com/JiayuanWang-JW/ADC-cycleGAN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

We have put our Github link for the code in the abstract. For the dataset, we introduce in our 4.2 subsections and provide a source link: https://github.com/ChengBinJin/MRI-to-CT-DCNN-TensorFlow.

Notes

  1. https://github.com/simontomaskarlsson/CycleGAN-Keras

  2. https://github.com/alpc91/NICE-GAN-pytorch

  3. https://github.com/taki0112/UGATIT

  4. https://github.com/Kid-Liet/Reg-GAN

  5. https://github.com/JiayuanWang-JW/DC-cycleGAN

  6. https://github.com/ChengBinJin/MRI-to-CT-DCNN-TensorFlow

References

  1. Xu L, Zeng X, Zhang H, Li W, Lei J, Huang Z (2020) Bpgan: Bidirectional ct-to-mri prediction using multi-generative multi-adversarial nets with spectral normalization and localization. Neural Netw 128:82–96

    Article  Google Scholar 

  2. Yang H, Lu X, Wang S-H, Lu Z, Yao J, Jiang Y, Qian P (2021) Synthesizing multi-contrast mr images via novel 3d conditional variational auto-encoding gan. Mobile Netw Appl 26(1):415–424

    Article  Google Scholar 

  3. Chen X, Lian C, Wang L, Deng H, Fung SH, Nie D, Thung K-H, Yap P-T, Gateno J, Xia JJ et al (2019) One-shot generative adversarial learning for mri segmentation of craniomaxillofacial bony structures. IEEE Trans Med Imaging 39(3):787–796

    Article  Google Scholar 

  4. Lee JH, Han IH, Kim DH, Yu S, Lee IS, Song YS, Joo S, Jin C-B, Kim H (2020) Spine computed tomography to magnetic resonance image synthesis using generative adversarial networks: a preliminary study. J Korean Neurosurg Soc 63(3):386–396

    Article  Google Scholar 

  5. Tomar D, Lortkipanidze M, Vray G, Bozorgtabar B, Thiran J-P (2021) Self-attentive spatial adaptive normalization for cross-modality domain adaptation. IEEE Trans Med Imaging 40(10):2926–2938

    Article  Google Scholar 

  6. Mérida I, Costes N, Heckemann RA, Drzezga A, Förster S, Hammers A (2015) Evaluation of several multi-atlas methods for pseudo-ct generation in brain mri-pet attenuation correction. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 1431–1434. IEEE

  7. Lian C, Li X, Kong L, Wang J, Zhang W, Huang X, Wang L (2022) Cocyclereg: collaborative cycle-consistency method for multi-modal medical image registration. Neurocomputing

  8. Li X, Jia M, Islam MT, Yu L, Xing L (2020) Self-supervised feature learning via exploiting multi-modal data for retinal disease diagnosis. IEEE Trans Med Imaging 39(12):4023–4033

    Article  Google Scholar 

  9. Jiao J, Namburete AI, Papageorghiou AT, Noble JA (2020) Self-supervised ultrasound to mri fetal brain image synthesis. IEEE Trans Med Imaging 39(12):4413–4424

    Article  Google Scholar 

  10. Berker Y, Franke J, Salomon A, Palmowski M, Donker HC, Temur Y, Mottaghy FM, Kuhl C, Izquierdo-Garcia D, Fayad ZA et al (2012) Mri-based attenuation correction for hybrid pet/mri systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/dixon mri sequence. J Nucl Med 53(5):796–804

    Article  Google Scholar 

  11. Sjölund J, Forsberg D, Andersson M, Knutsson H (2015) Generating patient specific pseudo-ct of the head from mr using atlas-based regression. Phys Med Biol 60(2):825

    Article  Google Scholar 

  12. Bhosale YH, Patnaik KS (2022) Application of deep learning techniques in diagnosis of covid-19 (coronavirus): a systematic review. Neural Process Lett: 1–53

  13. Bhosale YH, Patnaik KS (2023) Puldi-covid: chronic obstructive pulmonary (lung) diseases with covid-19 classification using ensemble deep convolutional neural network from chest x-ray images to minimize severity and mortality rates. Biomed Signal Process Control 81:104445

    Article  Google Scholar 

  14. Li R, Zhang W, Suk H-I, Wang L, Li J, Shen D, Ji S (2014) Deep learning based imaging data completion for improved brain disease diagnosis. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 305–312. Springer

  15. Huang Y, Shao L, Frangi AF (2017) Simultaneous super-resolution and cross-modality synthesis of 3d medical images using weakly-supervised joint convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6070–6079

  16. Zhao Y, Liao S, Guo Y, Zhao L, Yan Z, Hong S, Hermosillo G, Liu T, Zhou XS, Zhan Y (2018) Towards mr-only radiotherapy treatment planning: synthetic ct generation using multi-view deep convolutional neural networks. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 286–294

  17. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680

  18. Nie D, Trullo R, Lian J, Wang L, Petitjean C, Ruan S, Wang Q, Shen D (2018) Medical image synthesis with deep convolutional adversarial networks. IEEE Trans Biomed Eng 65(12):2720–2730

    Article  Google Scholar 

  19. Dalmaz O, Yurt M, Çukur T (2022) Resvit: residual vision transformers for multi-modal medical image synthesis. IEEE Trans Med Imaging

  20. Zhu J-Y, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232

  21. Liu S, Zhang B, Liu Y, Han A, Shi H, Guan T, He Y (2021) Unpaired stain transfer using pathology-consistent constrained generative adversarial networks. IEEE Trans Med Imaging 40(8):1977–1989

    Article  Google Scholar 

  22. Huo Y, Xu Z, Moon H, Bao S, Assad A, Moyo TK, Savona MR, Abramson RG, Landman BA (2018) Synseg-net: synthetic segmentation without target modality ground truth. IEEE Trans Med Imaging 38(4):1016–1025

    Article  Google Scholar 

  23. Liu Y, Lei Y, Wang T, Fu Y, Tang X, Curran WJ, Liu T, Patel P, Yang X (2020) Cbct-based synthetic ct generation using deep-attention cyclegan for pancreatic adaptive radiotherapy. Med Phys 47(6):2472–2483

    Article  Google Scholar 

  24. Huang Z, Chen Z, Zhang Q, Quan G, Ji M, Zhang C, Yang Y, Liu X, Liang D, Zheng H et al (2020) Cagan: a cycle-consistent generative adversarial network with attention for low-dose ct imaging. IEEE Trans Comput Imaging 6:1203–1218

    Article  MathSciNet  Google Scholar 

  25. Xu Z, Qi C, Xu G (2019) Semi-supervised attention-guided cyclegan for data augmentation on medical images. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 563–568

  26. Nie D, Shen D (2020) Adversarial confidence learning for medical image segmentation and synthesis. Int J Comput Vis 128(10):2494–2513

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang H, Sun J, Carass A, Zhao C, Lee J, Prince JL, Xu Z (2020) Unsupervised mr-to-ct synthesis using structure-constrained cyclegan. IEEE Trans Med Imaging 39(12):4249–4261

    Article  Google Scholar 

  28. Wang J, Wu Q, Pourpanah F (2022) Dc-cyclegan: bidirectional ct-to-mr synthesis from unpaired data. arXiv preprint arXiv:2211.01293

  29. Han X (2017) Mr-based synthetic ct generation using a deep convolutional neural network method. Med Phys 44(4):1408–1419

    Article  Google Scholar 

  30. Abu-Srhan A, Almallahi I, Abushariah MA, Mahafza W, Al-Kadi OS (2021) Paired-unpaired unsupervised attention guided gan with transfer learning for bidirectional brain mr-ct synthesis. Comput Biol Med 136:104763

    Article  Google Scholar 

  31. Woo S, Park J, Lee J-Y, Kweon IS (2018) CBAM: Convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19

  32. Wang T, Lei Y, Fu Y, Wynne JF, Curran WJ, Liu T, Yang X (2021) A review on medical imaging synthesis using deep learning and its clinical applications. J Appl Clin Med Phys 22(1):11–36

    Article  Google Scholar 

  33. Hofmann M, Steinke F, Scheel V, Charpiat G, Farquhar J, Aschoff P, Brady M, Schölkopf B, Pichler BJ (2008) Mri-based attenuation correction for pet/mri: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49(11):1875–1883

    Article  Google Scholar 

  34. Chen M, Jog A, Carass A, Prince JL (2015) Using image synthesis for multi-channel registration of different image modalities. In: Medical Imaging 2015: Image Processing, vol. 9413, pp. 462–468. SPIE

  35. Dowling JA, Lambert J, Parker J, Salvado O, Fripp J, Capp A, Wratten C, Denham JW, Greer PB (2012) An atlas-based electron density mapping method for magnetic resonance imaging (mri)-alone treatment planning and adaptive mri-based prostate radiation therapy. Int J Radiat Oncol Biol Phys 83(1):5–11

    Article  Google Scholar 

  36. Izquierdo-Garcia D, Hansen AE, Förster S, Benoit D, Schachoff S, Fürst S, Chen KT, Chonde DB, Catana C (2014) An spm8-based approach for attenuation correction combining segmentation and nonrigid template formation: application to simultaneous pet/mr brain imaging. J Nucl Med 55(11):1825–1830

    Article  Google Scholar 

  37. Delpon G, Escande A, Ruef T, Darréon J, Fontaine J, Noblet C, Supiot S, Lacornerie T, Pasquier D (2016) Comparison of automated atlas-based segmentation software for postoperative prostate cancer radiotherapy. Front Oncology 6:178

    Article  Google Scholar 

  38. Hsu S-H, Cao Y, Huang K, Feng M, Balter JM (2013) Investigation of a method for generating synthetic ct models from mri scans of the head and neck for radiation therapy. Physics Med Biol 58(23):8419

    Article  Google Scholar 

  39. Burgos N, Cardoso MJ, Thielemans K, Modat M, Pedemonte S, Dickson J, Barnes A, Ahmed R, Mahoney CJ, Schott JM et al (2014) Attenuation correction synthesis for hybrid pet-mr scanners: application to brain studies. IEEE Trans Med Imaging 33(12):2332–2341

    Article  Google Scholar 

  40. Sevetlidis V, Giuffrida MV, Tsaftaris SA (2016) Whole image synthesis using a deep encoder-decoder network. In: International Workshop on Simulation and Synthesis in Medical Imaging, pp. 127–137. Springer

  41. Zhou T, Fu H, Chen G, Shen J, Shao L (2020) Hi-net: hybrid-fusion network for multi-modal mr image synthesis. IEEE Trans Med Imaging 39(9):2772–2781

    Article  Google Scholar 

  42. Cao B, Zhang H, Wang N, Gao X, Shen D (2020) Auto-gan: self-supervised collaborative learning for medical image synthesis. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10486–10493

  43. Zhang T, Fu H, Zhao Y, Cheng J, Guo M, Gu Z, Yang B, Xiao Y, Gao S, Liu J (2019) Skrgan: sketching-rendering unconditional generative adversarial networks for medical image synthesis. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 777–785. Springer

  44. Hu S, Yuan J, Wang S (2019) Cross-modality synthesis from mri to pet using adversarial u-net with different normalization. In: 2019 International Conference on Medical Imaging Physics and Engineering (ICMIPE), pp. 1–5. IEEE

  45. Wu H, Jiang X, Jia F (2019) Uc-gan for mr to ct image synthesis. In: Workshop on Artificial Intelligence in Radiation Therapy, pp. 146–153. Springer

  46. Yang H, Sun J, Carass A, Zhao C, Lee J, Prince JL, Xu Z (2020) Unsupervised mr-to-ct synthesis using structure-constrained cyclegan. IEEE Trans Med Imaging 39(12):4249–4261

    Article  Google Scholar 

  47. Chen R, Huang W, Huang B, Sun F, Fang B (2020) Reusing discriminators for encoding: Towards unsupervised image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8168–8177

  48. Lee J, Gu J, Ye JC (2021) Unsupervised ct metal artifact learning using attention-guided \(\beta\)-cyclegan. IEEE Trans Med Imaging 40(12):3932–3944

    Article  Google Scholar 

  49. Kong L, Lian C, Huang D, Hu Y, Zhou Q et al (2021) Breaking the dilemma of medical image-to-image translation. Adv Neural Inform Process Syst 34

  50. Kim J, Kim M, Kang H, Lee KH U-gat-it: Unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation. In: International Conference on Learning Representations

  51. Larochelle H, Hinton GE (2010) Learning to combine foveal glimpses with a third-order boltzmann machine. Adv Neural Inform Process Syst 23

  52. Fukui H, Hirakawa T, Yamashita T, Fujiyoshi H (2019) Attention branch network: Learning of attention mechanism for visual explanation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10705–10714

  53. Fu J, Liu J, Tian H, Li Y, Bao Y, Fang Z, Lu H (2019) Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154

  54. Liu G, Guo J (2019) Bidirectional lstm with attention mechanism and convolutional layer for text classification. Neurocomputing 337:325–338

    Article  Google Scholar 

  55. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Adv Neural Inform Process Syst:30

  56. Chen C-FR, Fan Q, Panda R (2021) Crossvit: cross-attention multi-scale vision transformer for image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 357–366

  57. Guo M-H, Xu T-X, Liu J-J, Liu Z-N, Jiang P-T, Mu T-J, Zhang S-H, Martin RR, Cheng M-M, Hu S-M (2022) Attention mechanisms in computer vision: a survey. Comput Vis Med:1–38

  58. Misra D, Nalamada T, Arasanipalai AU, Hou Q (2021) Rotate to attend: convolutional triplet attention module. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3139–3148

  59. Wang S-H, Fernandes SL, Zhu Z, Zhang Y-D (2021) Avnc: attention-based vgg-style network for covid-19 diagnosis by cbam. IEEE Sens J 22(18):17431–17438

    Article  Google Scholar 

  60. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778

  61. Snell J, Ridgeway K, Liao R, Roads BD, Mozer MC, Zemel RS (2017) Learning to generate images with perceptual similarity metrics. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 4277–4281. IEEE

  62. Zhou Y, Wang X, Zhang M, Zhu J, Zheng R, Wu Q (2019) Mpce: a maximum probability based cross entropy loss function for neural network classification. IEEE Access 7:146331–146341

    Article  Google Scholar 

  63. Zhong Y, Liu L, Zhao D, Li H (2020) A generative adversarial network for image denoising. Multimed Tools Appl 79(23):16517–16529

    Article  Google Scholar 

  64. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. M. Jonathan Wu.

Ethics declarations

Conflict of interest

The dataset analyzed during the current study are available in the Github repository, https://github.com/ChengBinJin/MRI-to-CT-DCNN-TensorFlow.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wu, Q.M.J. & Pourpanah, F. An attentive-based generative model for medical image synthesis. Int. J. Mach. Learn. & Cyber. 14, 3897–3910 (2023). https://doi.org/10.1007/s13042-023-01871-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-023-01871-0

Keywords

Navigation