Skip to main content
Log in

M-pSC: a manifold p-spectral clustering algorithm

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Since p-spectral clustering has good performance in many practical problems, it has attracted great attention. The Cheeger cut criterion is used in p-spectral clustering to do graph partition. However, due to the improper affinity measure and outliers, the original p-spectral clustering algorithm is not effective in dealing with manifold data. To solve this problem, we propose a manifold p-spectral clustering (M-pSC) using path-based affinity measure. First, we design a path-based affinity function to describe the complex structures of manifold data. This affinity function obeys the clustering assumption that the data pairs within the manifold structure share high affinities, and the data pairs between different manifold structures share low affinities. This will help us construct a good affinity matrix, which carry more category information of the points. Then we propose a M-pSC algorithm using the path-based affinity function. In the Cheeger cut criterion, the p-Laplacian matrix are constructed based on the manifold affinity function, and the final clustering results are obtained by using the eigenvectors of graph p-Laplacian. At last, the proposed algorithm is tested on several public data sets and the experiments show that our algorithm is adaptive to different manifold data. Compared with other popular clustering algorithms, our algorithm has good clustering quality and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://archive.ics.uci.edu/ml/.

  2. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

References

  1. Liu R, Wang H, Yu X (2018) Shared-nearest-neighbor-based clustering by fast search and find of density peaks. Inf Sci 450:200–226

    Article  MathSciNet  Google Scholar 

  2. Zhang H, Lu J (2010) SCTWC: an online semi-supervised clustering approach to topical web crawlers. Appl Soft Comput 10(2):490–495

    Article  Google Scholar 

  3. Du T, Qu S, Liu F et al (2015) An energy efficiency semi-static routing algorithm for WSNs based on HAC clustering method. Inf Fusion 21:18–29

    Article  Google Scholar 

  4. Jia H, Ding S, Xu X et al (2014) The latest research progress on spectral clustering. Neural Comput Appl 24(7–8):1477–1486

    Article  Google Scholar 

  5. Zhang H, Cao L (2014) A spectral clustering based ensemble pruning approach. Neurocomputing 139:289–297

    Article  Google Scholar 

  6. Du M, Ding S, Xu X et al (2018) Density peaks clustering using geodesic distances. Int J Mach Learn Cybern 9(8):1335–1349

    Article  Google Scholar 

  7. Cheng D, Nie F, Sun J et al (2017) A weight-adaptive Laplacian embedding for graph-based clustering. Neural Comput 29(7):1902–1918

    Article  MathSciNet  Google Scholar 

  8. Li Z, Nie F, Chang X et al (2018) Rank-constrained spectral clustering with flexible embedding. IEEE Trans Neural Netw Learn Syst 29(12):6073–6082

    Article  MathSciNet  Google Scholar 

  9. Bresson X, Szlam AD (2010) Total variation and cheeger cuts. In: Proceedings of the 27th international conference on machine learning, pp 1039–1046

  10. Jia H, Ding S, Du M (2015) Self-tuning p-spectral clustering based on shared nearest neighbors. Cogn Comput 7(5):622–632

    Article  Google Scholar 

  11. Zhang L, Wei W, Bai C et al (2018) Exploiting clustering manifold structure for hyperspectral imagery super-resolution. IEEE Trans Image Process 27(12):5969–5982

    Article  MathSciNet  Google Scholar 

  12. Jia H, Wang L, Song H et al (2018) A K-AP clustering algorithm based on manifold similarity measure. In: IIP2018, IFIP AICT, vol 538, pp 20–29

  13. Frederix K, Van Barel M (2013) Sparse spectral clustering method based on the incomplete Cholesky decomposition. J Comput Appl Math 237(1):145–161

    Article  MathSciNet  Google Scholar 

  14. Binkiewicz N, Vogelstein JT, Rohe K (2017) Covariate-assisted spectral clustering. Biometrika 104(2):361–377

    Article  MathSciNet  Google Scholar 

  15. Ariascastro E, Lerman G, Zhang T (2017) Spectral clustering based on local PCA. J Mach Learn Res 18(9):253–309

    MathSciNet  Google Scholar 

  16. Law MT, Urtasun R, Zemel RS (2017) Deep spectral clustering learning. In: International conference on machine learning, pp 1985–1994

  17. Nie F, Wang X, Huang H (2014) Clustering and projected clustering with adaptive neighbors. In: ACM SIGKDD international conference on knowledge discovery & data mining. ACM, 2014, pp 977–986

  18. Tasdemir K, Yalcin B, Yildirim I (2015) Approximate spectral clustering with utilized similarity information using geodesic based hybrid distance measures. Pattern Recognit 48(4):1465–1477

    Article  Google Scholar 

  19. Goyal S, Kumar S, Zaveri MA et al (2017) Fuzzy similarity measure based spectral clustering framework for noisy image segmentation. Int J Uncertain Fuzziness Knowl Based Syst 25(04):649–673

    Article  MathSciNet  Google Scholar 

  20. Wang Y, Jiang Y, Wu Y et al (2011) Spectral clustering on multiple manifolds. IEEE Trans Neural Netw 22(7):1149–1161

    Article  Google Scholar 

  21. Langone R, Reynders E, Mehrkanoon S et al (2017) Automated structural health monitoring based on adaptive kernel spectral clustering. Mech Syst Signal Process 90:64–78

    Article  Google Scholar 

  22. Zhi W, Qian B, Davidson I (2017) Scalable constrained spectral clustering via the randomized projected power method. IEEE Int Conf Data Min 2017:1201–1206

    Google Scholar 

  23. Trillos NG, Slepčev D, Von Brecht J et al (2016) Consistency of cheeger and ratio graph cuts. J Mach Learn Res 17(1):6268–6313

    MathSciNet  Google Scholar 

  24. Wagner D, Wagner F (1993) Between min cut and graph bisection. In: Proceedings of the 18th international symposium on mathematical foundations of computer science (MFCS), pp 744–750

  25. Liu W, Ma X, Zhou Y et al (2019) p-Laplacian regularization for scene recognition. IEEE Trans Cybern 49(8):2927–2940

    Article  Google Scholar 

  26. Wang B, Zhang J, Liu Y et al (2017) Density peaks clustering based integrate framework for multi-document summarization. CAAI Trans Intell Technol 2(1):26–30

    Article  Google Scholar 

  27. Wang D, Wei Q, Bai X et al (2020) Fractal characteristics of fracture structure and fractal seepage model of coal. J China Univ Min Technol 49(232):103–109 (+122)

    Google Scholar 

  28. Pu Y, Apel DB, Liu V et al (2019) Machine learning methods for rockburst prediction-state-of-the-art review. Int J Min Sci Technol 29(4):565–570

    Article  Google Scholar 

  29. Kang R, Zhang T, Tang H et al (2016) Adaptive region boosting method with biased entropy for path planning in changing environment. CAAI Trans Intell Technol 1(2):179–188

    Article  Google Scholar 

  30. Dyke MV, Klemetti T, Wickline J (2020) Geologic data collection and assessment techniques in coal mining for ground control. Int J Min Sci Technol 30(1):131–139

    Article  Google Scholar 

  31. Hadjighasem A, Karrasch D, Teramoto H et al (2016) Spectral-clustering approach to Lagrangian vortex detection. Phys Rev E 93(6):063107

    Article  Google Scholar 

  32. Shi X, Li Y, Zhao Q (2019) Remote sensing image segmentation combining hierarchical Gaussian mixture model with M-H algorithm. J China Univ Min Technol 48(228):668–675

    Google Scholar 

  33. Jeong J, Kim H, Kim S (2018) Reconsideration of F1 score as a performance measure in mass spectrometry-based metabolomics. J Chosun Nat Sci 11(3):161–164

    Google Scholar 

  34. Jia H, Ding S, Du M et al (2016) Approximate normalized cuts without Eigen-decomposition. Inf Sci 374:135–150

    Article  Google Scholar 

  35. Zhang X, Li J, Yu H (2011) Local density adaptive similarity measurement for spectral clustering. Pattern Recognit Lett 32(2):352–358

    Article  Google Scholar 

  36. Du M, Ding S, Jia H (2016) Study on density peaks clustering based on k-nearest neighbors and principal component analysis. Knowl Based Syst 99:135–145

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (no. 61672522, no. 61976216, and no. 61906077), the Natural Science Foundation of Jiangsu Province (no. BK20190838), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (no. 18KJB520009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shifei Ding or Hongjie Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Ding, S., Wang, Y. et al. M-pSC: a manifold p-spectral clustering algorithm. Int. J. Mach. Learn. & Cyber. 12, 541–553 (2021). https://doi.org/10.1007/s13042-020-01187-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-020-01187-3

Keywords

Navigation