Advertisement

Robust visual tracking using discriminative sparse collaborative map

  • Zhenghua Zhou
  • Weidong Zhang
  • Jianwei ZhaoEmail author
Original Article
  • 29 Downloads

Abstract

Visual tracking is a challenging task as it needs to consider the appearance variations due to some intrinsic and extrinsic interference factors in the process of tracking. This paper proposes a robust visual tracking algorithm based on the discriminative sparse collaborative (DSC) map and the alternating direction method of multipliers (ADMM). In the proposed visual tracker, named DSC tracker, a novel multi-task reverse sparse representation model based on the group sparse representation and group collaborative representation is proposed. Different from the traditional trackers that use the accelerated proximal gradient for solution, an effective method called ADMM is adopted to solve the proposed optimization model. With the solution, we can construct the discriminative features that contain the sparsity and coordination for the candidates on all templates simultaneously. Many comparison experiments illustrate that the proposed DSC tracker outperforms the DSS tracker as well as several state-of-the-art trackers.

Keywords

Visual tracking Group sparse representation Group collaborative representation Alternating direction method of multipliers Discriminative score 

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (61571410) and the Zhejiang Provincial Nature Science Foundation of China (LY18F020018 and LSY19F020001).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest. This study did not involve Human Participants and Animals. The all authors of this paper have consented the submission.

References

  1. 1.
    Liu TS, Kong J, Jiang M, Liu CH, Gu XF, Wang XF (2019) Collaborative model with adaptive selection scheme for visual tracking. Int J Mach Learn Cybern 10(2):215–228CrossRefGoogle Scholar
  2. 2.
    Zhuang B, Lu H, Xiao Z, Wang D (2014) Visual tracking via discriminative sparse similarity map. IEEE Trans Image Process 23(4):1872–1881MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Collins RT, Liu Y, Leordeanu M (2005) Online selection of discriminative tracking features. IEEE Trans Pattern Anal Mach Intell 27(10):1631–1643CrossRefGoogle Scholar
  4. 4.
    Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29(2):261–271CrossRefGoogle Scholar
  5. 5.
    Babenko B, Yang MH, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632CrossRefGoogle Scholar
  6. 6.
    Liu TS, Kong J, Jiang M, Liu CH, Gu XF, Wang XF (2019) Collaborative model with adaptive selection scheme for visual tracking. Int J Mach Learn Cybern 10(2):215–228CrossRefGoogle Scholar
  7. 7.
    Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25(5):564–575CrossRefGoogle Scholar
  8. 8.
    Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol 1. pp 798–805Google Scholar
  9. 9.
    Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1–3):125–141CrossRefGoogle Scholar
  10. 10.
    Donoho D (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mei X, Ling H (2009) Robust visual tracking using \(\ell _1\) minimization. In: 2009 IEEE 12th International Conference on Computer Vision, pp 1436–1443Google Scholar
  12. 12.
    Bao C, Wu Y, Ling H, Ji H (2012) Real time robust \(L_1\) tracker using accelerated proximal gradient approach. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp 1830–1837Google Scholar
  13. 13.
    Wang D, Lu H, Yang MH (2013) Online object tracking with sparse prototypes. IEEE Trans Image Process 22(1):314–325MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jia X, Lu H, Yang MH (2012) Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 1822–1829Google Scholar
  15. 15.
    Zhang TZ, Ghanem B, Liu S, Ahuja N (2012) Robust visual tracking via multi-task sparse learning. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 2042–2049Google Scholar
  16. 16.
    Zhang TZ, Ghanem B, Liu S, Ahuja N (2013) Robust visual tracking via dtructured multi-task sparse learning. Int J Comput Vis 101:367–383MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wu GX, Zhao CX, Lu WJ, Xu W (2015) Efficient structured \(\ell _1\) tracker based on laplacian error distribution. Int J Mach Learn Cybern 6(4):581–591CrossRefGoogle Scholar
  18. 18.
    Zhang T, Liu S, Xu C, Yan S, Ghanem B, Ahuja N (2015) Structural sparse tracking. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol 7–12. pp 150–158Google Scholar
  19. 19.
    Wang D, Lu H, Xiao Z, Yang MH (2015) Inverse sparse tracker with a locally weighted distance metric. IEEE Trans Image Process 24(9):2646–2657MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Chartrand R, Wohlberg B (2013) A nonconvex ADMM algorithm for group sparsity with sparse groups. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp 6009–6013Google Scholar
  21. 21.
    Zhao ZQ, Ping F, Guo JJ, Yuan CH, Wu B (2018) A hybrid tracking framework based on kernel correlation filtering and particle filtering. Neurocomputing 297(5):40–49CrossRefGoogle Scholar
  22. 22.
    Liu L, Xi ZH, Sun Q (2019) Multi-vision tracking and collaboration based on spatial particle filter. J Vis Commun Image Represent 59:316–326CrossRefGoogle Scholar
  23. 23.
    Qian XY, Han L, Wang YD, Ding M (2018) Deep learning assisted robust visual tracking with adaptive particle filtering. Signal Process Image Commun 60:183–192CrossRefGoogle Scholar
  24. 24.
    Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 2411–2418Google Scholar
  25. 25.
    Kwon J, Lee KM (2010) Visual tracking decomposition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 1269–1276Google Scholar
  26. 26.
    Henriques JF, Caseiro R, Martins P, Batista J (2012) Exploiting the circulant structure of tracking-by-detection with kernels. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 7575. PART 4, pp 702–715Google Scholar
  27. 27.
    Henriques JF, Rui C, Martins P, Batista J (2014) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell 37(3):583–596CrossRefGoogle Scholar
  28. 28.
    Zhang K, Liu Q, Wu Y, Yang MH (2016) Robust visual tracking via convolutional networks without training. IEEE Trans Image Process 25(4):1779–1792MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Information Sciences and MathematicsChina Jiliang UniversityHangzhouChina
  2. 2.State Key Laboratory for Novel Software TechnologyNanjing UniversityNanjingChina

Personalised recommendations