Automatic optic disc detection using low-rank representation based semi-supervised extreme learning machine


Optic disc detection plays an important role in developing automatic screening systems for diabetic retinopathy. Several supervised learning-based approaches have been proposed for optic disc detection. However, these approaches demand that the input training examples are completely labelled. Essentially, in medical image analysis, it is difficult to prepare several training samples which were given reliable class labels due to the fact that manually labelling data is very expensive. Moreover, retinal images such as complex vessels structures in the optic disc constituting nonlinear relationships in high-dimensional observation space, which cannot work well by traditional linear classifiers. In this study, a novel approach named low-rank representation based semi-supervised extreme learning machine (LRR-SSELM) is proposed for automated optic disc detection. Our model has the following advantages. First, it detects the optic disc from the viewpoint of semi-supervised learning and overcomes the problem there are small portion of labelled samples. Second, a nonlinear classifier is introduced into our model to fully explore the nonlinear data. Third, the local and global structures of original data can be greatly persevered by low-rank representation (LRR). The performance of the proposed method is validated on three publicly available databases, DIARETDB0, DIARETDB1 and Messidor. The experimental results indicate the advantages and effectiveness of the proposed approach.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Li R, Qin L, Yu J, Mao R (2015) Influential community search in large networks. Proc Vldb Endowment 8(5):509–520

    Google Scholar 

  2. 2.

    Li R, Qin L, Yu J, Mao R (2017) Finding influential communities in massive networks. Vldb J 26(2):1–26

    Google Scholar 

  3. 3.

    Li R, Qin L, Ye F, Yu J, Xiao X, Xiao N, Zhang Z (2018) Skyline community search in multi-valued networks. In: Proceedings of the 2018 international conference on management of data, pp. 457–472

  4. 4.

    Zhou W, Wu C, Gao Y, Yu X (2017) Automatic optic disc boundary extraction based on saliency object detection and modified local intensity clustering model in retinal images. Inst Electron Inf Commun Eng E 100-A(9):2069–2072

    Google Scholar 

  5. 5.

    Zhou W, Wu C, Yu X, Gao Y, Du W (2017) Automatic Fovea Center localization in retinal images using saliency-guided object discovery and feature extraction. J Med Imaging Health Inf 7:1–8

    Google Scholar 

  6. 6.

    Zhou W, Wu C, Du W (2017) Automatic Optic Disc Detection in Retinal Images via Group Sparse Regularization Extreme Learning Machine. Control Conference (CCC), 36th Dalian, China

  7. 7.

    Osareh A, Mirmehdi M, Thomas B, Markham R (2002) Classification and localisation of diabetic-related eye disease. In: 7th European conference on computer vision (ECCV). May 2353:502–516

  8. 8.

    Sinthanayothin C, Boyce J, Cook H, Williamson T (1999) Automated localisation of the optic disc, fovea and retinal blood vessels from digital colour fundus images. Br J Ophthalmol 83:902–910

    Google Scholar 

  9. 9.

    Li H, Chutatape O (2004) Automated feature extraction in color retinal images by a model based approach. IEEE Trans Biomed Eng 51:246–254

    Google Scholar 

  10. 10.

    Park M, Jin JS, Luo S (2006) Locating the optic disc in retinal images. In: Proceedings of the international conference on computer graphics, imaging and visualisation, pp 141–145

  11. 11.

    Seo JM, Kim KK, Kim JH, Park KS, Chung H (2004) Measurement of ocular torsion using digital fundus image. In: International conference of the IEEE engineering in medicine and biology society, 3, 1711

  12. 12.

    Liu S, Chen J (2011) Detection of the optic disc on retinal fluorescein angiograms. J Med Biol Eng 31(6):405–412

    Google Scholar 

  13. 13.

    Mithun NC, Das S, Fattah SA (2014) Automated detection of optic disc and blood vessel in retinal image using morphological, edge detection and feature extraction technique. In: Proceedings of the 16th international conference on computer and information technology (ICCIT’14), pp 98–102

  14. 14.

    Lalonde M, Beaulieu M, Gagnon L (2001) Fast and robust optic disc detection using pyramidal decomposition and hausdorff based template matching. IEEE Trans Med Imaging 20(11):1193–1200

    Google Scholar 

  15. 15.

    Youssif AR, Ghalwash AZ, Ghoneim AR (2008) Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter. IEEE Trans Med Imaging 27(1):11–18

    Google Scholar 

  16. 16.

    Zhang B, Karray F (2010) Optic disc and fovea detection via multi-scale matched filters and a vessels’ directional matched filter. In: Autonomous and intelligent systems—first international conference, pp 1–5

  17. 17.

    Niemeijer M, Abràmoff MD, Ginneken BV (2009) Fast detection of the optic disc and fovea in color fundus photographs. Med Image Anal 13(6):859–870

    Google Scholar 

  18. 18.

    Tobin KW, Chaum E, Govindasamy VP, Karnowski TP (2007) Detection of anatomic structures in human retinal imagery. IEEE Trans Med Imaging 26(12):1729–1739

    Google Scholar 

  19. 19.

    Perez CA, Schulz DA, Aravena CM, Perez CI, Verdaguer TJ (2013) A new method for online retinal optic-disc detection based on cascade classifiers. In: Proceedings of the 2013 IEEE international conference on systems, pp 4300–4304

  20. 20.

    Zhou W, Wu C, Chen D, Yi Y, Du W (2017) Automatic microaneurysm detection using the sparse principal component analysis-based unsupervised classification method. IEEE Access 5(99):2563–2572

    Google Scholar 

  21. 21.

    Zhou W, Wu C, Yi Y, Du W (2017) Automatic detection of exudates in digital color fundus images using superpixel multi-feature classification. IEEE Access 5:17077–17088

    Google Scholar 

  22. 22.

    Zhou W, Wu H, Wu C, Yu X, Yi Y (2018) Automatic optic disc detection in color retinal images by local feature spectrum analysis. Comput Math Methods Med 2018:1–12

    MATH  Google Scholar 

  23. 23.

    Benhur A, Weston J (2010) A user’s guide to support vector machines. Methods Mol Biol 609(2010):223

    Google Scholar 

  24. 24.

    Cao W, Wang X, Ming Z, Gao J (2018) A review on neural networks with random weights. Neurocomputing 275:278–287

    Google Scholar 

  25. 25.

    Wang X, Cao W (2018) Non-iterative approaches in training feed-forward neural networks and their applications. Soft Comput 22(11):3473–3476

    MATH  Google Scholar 

  26. 26.

    Zhai J, Zhang S, Wang C (2017) The classification of imbalanced large data sets based on mapreduce and ensemble of elm classifiers. Int J Mach Learn Cybern 8(3):1009–1017

    Google Scholar 

  27. 27.

    Cao W, Gao J, Ming Z, Cai S, Shan Z (2018) Fuzziness-based online sequential extreme learning machine for classification problems. Soft Comput 22(11):3487–3494

    Google Scholar 

  28. 28.

    Liu M, Liu B, Zhang C, Wang W, Sun W (2017) Semi-supervised low rank kernel learning algorithm via extreme learning machine. Int J Mach Learn Cybern 8(3):1039–1052

    Google Scholar 

  29. 29.

    Ding S, Zhang N, Zhang J, Xu X, Shi Z (2017) Unsupervised extreme learning machine with representational features. Int J Mach Learn Cybern 8(2):587–595

    Google Scholar 

  30. 30.

    Mao W, Wang J, Xue Z (2017) An ELM-based model with sparse-weighting strategy for sequential data imbalance problem. Int J Mach Learn Cybern 8(4):1333–1345

    Google Scholar 

  31. 31.

    Yi Y, Chen Y, Dai J, Gui X, Chen C, Lei G, Wang W (2018) Semi-supervised ridge regression with adaptive graph-based label propagation. Appl Sci 8(12):2631–2636

    Google Scholar 

  32. 32.

    Huang G, Song S, Gupta JN, Wu C (2014) Semi-supervised and unsupervised extreme learning machines. Cybern IEEE Trans 44(12):2405–2417

    Google Scholar 

  33. 33.

    Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Google Scholar 

  34. 34.

    Sánchez CI, Hornero R, López MI (2008) A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis. Med Eng Phys 30(3):350–357

    Google Scholar 

  35. 35.

    Reza AM (2004) Realization of the contrast limited adaptive histogram equalization (clahe) for real-time image enhancement. J Signal Process Syst 38(1):35–44

    Google Scholar 

  36. 36.

    Bharath R, Nicholas LZJ, Xiang C (2013) Scalable scene understanding using saliency-guided object localization. IEEE Int Conf Control Autom 45(5):1503–1508

    Google Scholar 

  37. 37.

    Matlab r2015 documentation (2015) Morphological reconstruction.

  38. 38.

    Huang G, Zhu Q, Siew C (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501

    Google Scholar 

  39. 39.

    Liu T, Huang GB, Lin Z (2018) Extreme learning machine for joint embedding and clustering. Neurocomputing 277:78–88

    Google Scholar 

  40. 40.

    Yao L, Ge Z (2018) Deep learning of semi-supervised process data with hierarchical extreme learning machine and soft sensor application. IEEE Trans Industr Electron 65(2):1490–1498

    Google Scholar 

  41. 41.

    Pang J, Gu Y, Xu J, Yu G (2018) Semi-supervised multi-graph classification using optimal feature selection and extreme learning machine. Neurocomputing 277:89–100

    Google Scholar 

  42. 42.

    Chen Y, Song S, Li S, Lang L, Wu C (2018) Domain space transfer extreme learning machine for domain adaptation. IEEE Trans Cybern PP(99):1–14

    Google Scholar 

  43. 43.

    Yi Y, Qiao S, Zhou W, Zheng C, Liu Q, Wang J (2018) Adaptive multiple graph regularized semi-supervised extreme learning machine. Soft Comput 22(11):3545–3562

    MATH  Google Scholar 

  44. 44.

    Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Google Scholar 

  45. 45.

    Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition? In: Proceeding of IEEE international conference on computer vision, pp 471–478

  46. 46.

    DIARETDB0. Standard diabetic retinopathy database. Accessed 30 May 2007

  47. 47.

    Kauppi T, Kalesnykiene V, Kamarainen JK, Lensu L, Sorri I, Raninen A et al (2013) DIARETDB1 diabetic retinopathy database and evaluation protocol. In: British machine vision conference 2007, University of Warwick, UK, September. DBLP

  48. 48.

    Decencière E, Zhang X, Cazuguel G, Lay B, Cochener B, Trone C, Gain P, Ordonez R, Massin P, Erginay A, Charton B, Klein JC (2014) Feedback on a publicly distributed image database: the Messidor database. Image Anal Stereol 33(3):231–234

    MATH  Google Scholar 

  49. 49.

    Wang J, Zhao R, Wang Y, Zheng C, Kong J, Yi Y (2017) Locality constrained graph optimization for dimensionality reduction. Neurocomputing 245:55–67

    Google Scholar 

  50. 50.

    An S, Liu W, Venkatesh S (2007) Face recognition using kernel ridge regression. Proc IEEE Int Conf Comput Vis 5(6):1–7

    Google Scholar 

  51. 51.

    Xiang S, Nie F, Zhang C (2010) Semi-supervised classification via local spline regression. IEEE Trans Pattern Anal Mach Intell 32(11):2039–2053

    Google Scholar 

  52. 52.

    Yu H, Barriga ES, Agurto C, Echegaray S, Pattichis MS, Bauman W (2012) Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets. IEEE Trans Inf Technol Biomed 16(4):644–657

    Google Scholar 

  53. 53.

    Ahmed MI, Amin MA (2015) High speed detection of optical disc in retinal fundus image. Signal Image Video Processing 9(1):77–85

    Google Scholar 

  54. 54.

    Aquino A, Gegundez ME, Marin D (2012) Automated optic disc detection in retinal images of patients with diabetic retinopathy and risk of macular edema. Int J Biol Life Sci 8(2):87–92

    Google Scholar 

  55. 55.

    Dashtbozorg B, Zhang J, Huang F, Haar Romeny ter BM (2016) Automatic optic disc and fovea detection in retinal images using super-elliptical convergence index filters. In: Proceedings of the international conference image analysis and recognition, pp 697–706

  56. 56.

    Qureshi RJ, Kovacs L, Harangi B, Nagy B, Peto T, Hajdu A (2012) Combining algorithms for automatic detection of optic disc and macula in fundus images. Comput Vis Image Underst 116:138–145

    Google Scholar 

  57. 57.

    Pereira C, Gonçalves L, Ferreira M (2013) Optic disc detection in color fundus images using ant colony optimization. Med Biol Eng Comput 51:295–303

    Google Scholar 

  58. 58.

    Rahebi J, Hardalaç F (2016) A new approach to optic disc detection in human retinal images using the firefly algorithm. Med Biol Eng Comput 54(2–3):453–461

    Google Scholar 

  59. 59.

    Qiao S, Han N, Gao Y, Li R-H, Huang J, Guo J, Gutierrez LA, Wu X (2018) A fast parallel community discovery model on complex networks through approximate optimization. IEEE Trans Knowl Data Eng 30(9):1638–1651

    Google Scholar 

  60. 60.

    Qiao S, Han N, Wang J, Li R-H, Gutierrez LA, Wu X (2017) Predicting long-term trajectories of connected vehicles via the prefix-projection technique. IEEE Trans Intell Transp Syst 19(7):2305–2315

    Google Scholar 

  61. 61.

    Qiao S, Han N, Zhu W, Gutierrez LA (2015) Traplan: an effective three-in-one trajectory-prediction model in transportation networks. IEEE Trans Intell Transp Syst 16(3):1188–1198

    Google Scholar 

  62. 62.

    Qiao S, Shen D, Wang X, Han N, Zhu W (2015) A self-adaptive parameter selection trajectory prediction approach via hidden markov models. IEEE Trans Intell Transp Syst 16(1):284–296

    Google Scholar 

  63. 63.

    Yi Y, Zhou W, Bi C, Luo G, Cao Y, Shi Y (2017) Inner product regularized nonnegative self representation for image classification and clustering. IEEE Access 5:14165–14176

    Google Scholar 

  64. 64.

    Yi Y, Zhou W, Liu Q, Luo G, Wang J, Fang Y, Zheng C (2018) Ordinal preserving matrix factorization for unsupervised feature selection. Sig Process Image Commun 67:118–131

    Google Scholar 

  65. 65.

    Yi Y, Zhou W, Shi Y, Dai J (2018) Speedup two-class supervised outlier detection. IEEE Access 6:63923–63933

    Google Scholar 

Download references


This study was supported in part by the National Natural Science Foundation of China under Grant Nos. 61602221, 61772091, 61762050, 61802035 and 4166108; the Natural Science Foundation of Jiangxi Province under Grant No. 20171BAB212009; the Sichuan Science and Technology Program under Grant No. 2018JY0448; the National Natural Science Foundation of Guangxi under Grant No. 2018GXNSFDA138005; the Innovative Research Team Construction Plan in Universities of Sichuan Province under Grant No. 18TD0027; the Scientific Research Foundation for Advanced Talents of Chengdu University of Information Technology under Grant Nos. KYTZ201715 and KYTZ201750; the Scientific Research Foundation for Young Academic Leaders of Chengdu University of Information Technology under Grant No. J201701; Guangdong Pre-national project under Grant No. 2014GKXM054.

Author information



Corresponding authors

Correspondence to Shaojie Qiao or Yugen Yi.

Ethics declarations

Conflict of interest

All authors declare that this support does not lead to any conflict of interest regarding the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Qiao, S., Yi, Y. et al. Automatic optic disc detection using low-rank representation based semi-supervised extreme learning machine. Int. J. Mach. Learn. & Cyber. 11, 55–69 (2020).

Download citation


  • Retinal fundus images
  • Optic disc
  • Low-rank representation
  • Semi-supervised extreme learning machine