A decomposition based multiobjective evolutionary algorithm with self-adaptive mating restriction strategy

Abstract

MOEA/D decomposes the multiobjective optimization problem into a number of subproblems. However, one subproblem’s requirement for exploitation and exploration varies with the evolutionary process. Furthermore, different subproblems’ requirements for exploitation and exploration are also different as the subproblems have been solved in distinct degree. This paper proposes a decomposition based multiobjective evolutionary algorithm with self-adaptive mating restriction strategy (MOEA/D-MRS). Considering the distinct solved degree of the subproblems, each subproblem has a separate mating restriction probability to control the contributions of exploitation and exploration. Besides, the mating restriction probability is updated by the survival length at each generation to adapt to the changing requirements. The experimental results validate that MOEA/D-MRS performs well on two test suites.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Bader J, Zitzler E (2011) Hype: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19:45–76

    Google Scholar 

  2. 2.

    Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur J Oper Res 181:1653–1669

    MATH  Google Scholar 

  3. 3.

    Cai X, Li Y, Fan Z, Zhang Q (2014) An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization. IEEE Trans Evol Comput 19:508–523

    Google Scholar 

  4. 4.

    Cai X, Yang Z, Fan Z, Zhang Q (2017) Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization. IEEE Trans Cybern 47:2824–2837

    Google Scholar 

  5. 5.

    Chiang TC, Lai YP (2011) MOEA/D-AMS: Improving MOEA/D by an adaptive mating selection mechanism. In: Evolutionary computation. IEEE, New Orleans, pp 1473–1480

    Google Scholar 

  6. 6.

    Dai C, Wang Y (2015) A new decomposition based evolutionary algorithm with uniform designs for many-objective optimization. Appl Soft Comput 30:238–248

    Google Scholar 

  7. 7.

    Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York

    Google Scholar 

  8. 8.

    Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

    Google Scholar 

  9. 9.

    Gong M, Wang Z, Zhu Z, Jiao L (2017) A similarity-based multiobjective evolutionary algorithm for deployment optimization of near space communication system. IEEE Trans Evol Comput 21:878–897

    Google Scholar 

  10. 10.

    Gu F, Cheung YM (2018) Self-organizing map-based weight design for decomposition-based many-objective evolutionary algorithm. IEEE Trans Evol Comput 22:211–225

    Google Scholar 

  11. 11.

    Huband S, Barone L, While L, Hingston P (2005) A scalable multi-objective test problem toolkit. Lect Notes Comput Sci 3410:280–295

    MATH  Google Scholar 

  12. 12.

    Ishibuchi H, Yu S, Masuda H, Nojima Y (2017) Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes. IEEE Trans Evol Comput 21:169–190

    Google Scholar 

  13. 13.

    Jiang S, Yang S (2016) An improved multiobjective optimization evolutionary algorithm based on decomposition for complex Pareto fronts. IEEE Trans Cybern 46:421–437

    Google Scholar 

  14. 14.

    Jiang S, Yang S, Wang Y, Liu X (2018) Scalarizing functions in decomposition-based multiobjective evolutionary algorithms. IEEE Trans Evol Comput 22:296–313

    Google Scholar 

  15. 15.

    Ke L, Zhang Q, Battiti R (2013) MOEA/D-ACO: A multiobjective evolutionary algorithm using decomposition and ant colony. IEEE Trans Cybern 43:1845–1859

    Google Scholar 

  16. 16.

    Ke L, Zhang Q, Battiti R (2014) Hybridization of decomposition and local search for multiobjective optimization. IEEE Trans Cybern 44:1808–1820

    Google Scholar 

  17. 17.

    Li H, Zhang Q (2009) Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 13:284–302

    Google Scholar 

  18. 18.

    Li H, Zhang Q, Chen Q, Zhang L, Jiao YC (2016) Multiobjective differential evolution algorithm based on decomposition for a type of multiobjective bilevel programming problems. Knowl-Based Syst 107:271–288

    Google Scholar 

  19. 19.

    Li H, Zhang Q, Deng J (2016) Biased multiobjective optimization and decomposition algorithm. IEEE Trans Cybern 47:52–66

    Google Scholar 

  20. 20.

    Li K, Fialho A, Kwong S, Zhang Q (2014) Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 18:114–130

    Google Scholar 

  21. 21.

    Li K, Kwong S, Zhang Q, Deb K (2015) Interrelationship-based selection for decomposition multiobjective optimization. IEEE Trans Cybern 45:2076–2088

    Google Scholar 

  22. 22.

    Li K, Zhang Q, Kwong S, Li M, Wang R (2014) Stable matching-based selection in evolutionary multiobjective optimization. IEEE Trans Evol Comput 18:909–923

    Google Scholar 

  23. 23.

    Li X, Zhang H, Song S (2018) A self-adaptive mating restriction strategy based on survival length for evolutionary multiobjective optimization. Swarm Evol Comput. https://doi.org/10.1016/j.swevo.2018.02.009

    Article  Google Scholar 

  24. 24.

    Li Y, Zhou A, Zhang G (2014) An MOEA/D with multiple differential evolution mutation operators. In: Proceedings of the IEEE congress on evolutionary computation (CEC 2014), Beijing, China, 2014c. IEEE, pp 397–404

  25. 25.

    Lin Q et al (2017) A diversity-enhanced resource allocation strategy for decomposition-based multiobjective evolutionary algorithm. IEEE Trans Cybern 48:2388–2401

    Google Scholar 

  26. 26.

    Lin Q et al (2016) Adaptive composite operator selection and parameter control for multiobjective evolutionary algorithm. Inf Sci 339:332–352

    Google Scholar 

  27. 27.

    Lin Q, Tang C, Du Z, Li J, Chen J, Ming Z (2017) A novel adaptive control strategy for decomposition-based multiobjective algorithm. Comput Oper Res 78:94–107

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Lin S, Lin F, Chen H, Zeng W (2016) A MOEA/D-based multi-objective optimization algorithm for remote medical. Neurocomputing 220:5–16

    Google Scholar 

  29. 29.

    Liu HL, Chen L, Zhang Q, Deb K (2018) Adaptively allocating search effort in challenging many-objective optimization problems. IEEE Trans Evol Comput 22:433–448

    Google Scholar 

  30. 30.

    Ma X et al (2014) MOEA/D with opposition-based learning for multiobjective optimization problem. Neurocomputing 146:48–64

    Google Scholar 

  31. 31.

    Ma X, Liu F, Qi Y, Li L, Jiao L, Liu M, Wu J (2014) MOEA/D with Baldwinian learning inspired by the regularity property of continuous multiobjective problem. Neurocomputing 145:336–352

    Google Scholar 

  32. 32.

    Ma X, Zhang Q, Tian G, Yang J, Zhu Z (2018) On Tchebycheff decomposition approaches for multiobjective evolutionary optimization. IEEE Trans Evol Comput 22:226–244

    Google Scholar 

  33. 33.

    Mashwani WK, Salhi A (2014) Multiobjective memetic algorithm based on decomposition. Appl Soft Comput 21:221–243

    Google Scholar 

  34. 34.

    Ming M, Wang R, Zha Y, Zhang T (2017) Pareto adaptive penalty-based boundary intersection method for multi-objective optimization. Inf Sci 414:158–174

    MathSciNet  Google Scholar 

  35. 35.

    Qi Y, Bao L, Ma X, Miao Q, Li X (2016) Self-adaptive multi-objective evolutionary algorithm based on decomposition for large-scale problems: a case study on reservoir flood control operation. Inf Sci 367–368:529–549

    Google Scholar 

  36. 36.

    Qi Y, Hou Z, Li H, Huang J, Li X (2015) A decomposition based memetic algorithm for multi-objective vehicle routing problem with time windows. Comput Oper Res 62:61–77

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Qi Y, Ma X, Liu F, Jiao L, Sun J, Wu J (2014) MOEA/D with adaptive weight adjustment. Evol Comput 22:231–264

    Google Scholar 

  38. 38.

    Sato H (2014) Inverted PBI in MOEA/D and its impact on the search performance on multi and many-objective optimization. In: Genetic and evolutionery computation conference (GECCO 2014), Vancouver, BC, Canada ACM, pp 645–652

  39. 39.

    Tan YY, Jiao YC, Li H, Wang XK (2013) MOEA/D+ uniform design: a new version of MOEA/D for optimization problems with many objectives. Comput Oper Res 40:1648–1660

    MathSciNet  MATH  Google Scholar 

  40. 40.

    Trivedi A, Srinivasan D, Pal K, Saha C, Reindl T (2017) Enhanced multiobjective evolutionary algorithm based on decomposition for solving the unit commitment problem. IEEE Trans Ind Inf 11:1346–1357

    Google Scholar 

  41. 41.

    Trivedi A, Srinivasan D, Sanyal K, Ghosh A (2017) A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Trans Evol Comput 21:440–462

    Google Scholar 

  42. 42.

    Venske SM, Gonçalves RA, Benelli EM, Delgado MR (2016) ADEMO/D: an adaptive differential evolution for protein structure prediction problem. Expert Syst Appl 56:209–226

    Google Scholar 

  43. 43.

    Wang L, Zhang Q, Zhou A, Gong M, Jiao L (2016) Constrained subproblems in a decomposition-based multiobjective evolutionary algorithm. IEEE Trans Evol Comput 20:475–480

    Google Scholar 

  44. 44.

    Wang R, Zhou Z, Ishibuchi H, Liao T, Zhang T (2018) Localized weighted sum method for many-objective optimization. IEEE Trans Evol Comput 22:3–18

    Google Scholar 

  45. 45.

    Wang Z, Zhang Q, Li H, Ishibuchi H, Jiao L (2017) On the use of two reference points in decomposition based multiobjective evolutionary algorithms. Swarm Evol Comput 34:89–102

    Google Scholar 

  46. 46.

    Wang Z, Zhang Q, Zhou A, Gong M, Jiao L (2017) Adaptive replacement strategies for MOEA/D. IEEE Trans Cybern 46:474–486

    Google Scholar 

  47. 47.

    Wu M, Li K, Kwong S, Zhang Q, Zhang J (2018) Learning to decompose: a paradigm for decomposition-based multiobjective optimization. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2018.2865931

    Article  Google Scholar 

  48. 48.

    Wu M, Li K, Kwong S, Zhou Y, Zhang Q (2017) Matching-based selection with incomplete lists for decomposition multiobjective optimization. IEEE Trans Evol Comput 21:554–568

    Google Scholar 

  49. 49.

    Xing H, Wang Z, Li T, Li H, Qu R (2017) An improved MOEA/D algorithm for multi-objective multicast routing with network coding. Appl Soft Comput 59:88–103

    Google Scholar 

  50. 50.

    Yang S, Jiang S, Jiang Y (2016) Improving the multiobjective evolutionary algorithm based on decomposition with new penalty schemes. Soft Comput 21:1–15

    Google Scholar 

  51. 51.

    Yuan Y, Xu H, Wang B, Zhang B, Yao X (2016) Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE Trans Evol Comput 20:180–198

    Google Scholar 

  52. 52.

    Zhang H, Zhang X, Gao XZ, Song S (2016) Self-organizing multiobjective optimization based on decomposition with neighborhood ensemble. Neurocomputing 173:1868–1884

    Google Scholar 

  53. 53.

    Zhang J, Tang Q, Li P, Deng D, Chen Y (2016) A modified MOEA/D approach to the solution of multi-objective optimal power flow problem. Appl Soft Comput 47:494–514

    Google Scholar 

  54. 54.

    Zhang Q (2015) Multiobjective evolutionary algorithm based on decomposition for 3-objective optimization problems with objectives in different scales. Soft Comput 19:157–166

    Google Scholar 

  55. 55.

    Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11:712–731

    Google Scholar 

  56. 56.

    Zhang Q, Liu W, Li H (2009) The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: Proceedings of the IEEE congress on evolutionary computation (CEC 09), Trondheim, Norway IEEE, pp 203–208

  57. 57.

    Zhang Q, Zhou A, Jin Y (2008) RM-MEDA: a regularity model-based multiobjective estimation of distribution algorithm. IEEE Trans Evol Comput 12:41–63

    Google Scholar 

  58. 58.

    Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2008) Multiobjective optimization test instances for the CEC 2009 special session and competition. Special session on performance assessment of multi-objective optimization algorithms, technique report. University of Essex, Colchester Technological University, Singapore

    Google Scholar 

  59. 59.

    Zhang YH, Gong YJ, Gu TL, Yuan HQ, Wei Z, Kwong S, Zhang J (2017) DECAL: decomposition-based coevolutionary algorithm for many-objective optimization. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2017.2762701

    Article  Google Scholar 

  60. 60.

    Zhao SZ, Suganthan PN, Zhang Q (2012) Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans Evol Comput 16:442–446

    Google Scholar 

  61. 61.

    Zheng J, Yu G, Zhu Q, Li X, Zou J (2016) On decomposition methods in interactive user-preference based optimization. Appl Soft Comput 52:952–973

    Google Scholar 

  62. 62.

    Zhou A, Qu BY, Li H, Zhao SZ, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol Comput 1:32–49

    Google Scholar 

  63. 63.

    Zhou A, Zhang Q (2016) Are all the subproblems equally important? Resource allocation in decomposition-based multiobjective evolutionary algorithms. IEEE Trans Evol Comput 20:52–64

    Google Scholar 

  64. 64.

    Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. Lect Notes Comput Sci 3242:832–842

    Google Scholar 

  65. 65.

    Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the Strength Pareto evolutionary algorithm. Swiss Federal Institute of Technology (ETH) Zurich, Zurich

    Google Scholar 

  66. 66.

    Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3:257–271

    Google Scholar 

Download references

Funding

This study was funded by China Aerospace Science and Technology Innovation Foundation (Grant number: CAST.No.JZ20160008), National Natural Science Foundation of China (Grant number: 61333003) and National Natural Science Foundation of China (Grant number: 61703382).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shenmin Song.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, H. & Song, S. A decomposition based multiobjective evolutionary algorithm with self-adaptive mating restriction strategy. Int. J. Mach. Learn. & Cyber. 10, 3017–3030 (2019). https://doi.org/10.1007/s13042-018-00919-w

Download citation

Keywords

  • Multiobjective optimization
  • Evolutionary algorithm
  • MOEA/D
  • Self-adaptive mating restriction