Colour face recognition using fuzzy quaternion-based discriminant analysis

Abstract

Colour information has been shown to be effective in improving object recognition performance. In this paper, we propose a novel quaternion-based colour model with enhanced fuzzy parameterized discriminant analysis to perform face recognition. The proposed method represents and classifies colour images by using an improved fuzzy quaternion-based discriminant (FQD) model, which is effective for colour image feature representation, extraction and classification. More specifically, each pixel in a colour image is first assigned a quaternion number, and a quaternion-based vector is then generated to represent this colour image. Second, an enhanced fuzzy parameterized discriminant analysis is used to transform the original quaternion-based vector into an optimized discriminant quaternion space. Third, colour face recognition is conducted by interpreting the colour feature model as fuzzy weight measurement in a quaternion discriminant analysis. The main contribution of this paper is that it provides a novel fuzzy supervised learning approach to reconstruct the quaternion-based discriminant vector space, thus showing the importance of the FQD characteristic from colour spaces for colour-image-based face recognition. Experimental results on the AR and Georgia Tech colour datasets demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Yang J, Liu CJ, Zhang L (2010) Color space normalization: enhancing the discriminating power of color spaces for face recognition. Pattern Recognit 43:1454–1466

    MATH  Article  Google Scholar 

  2. 2.

    Liu CJ (2011) Extracting discriminative color features for face recognition. Pattern Recognit Lett 32:1796–1804

    Article  Google Scholar 

  3. 3.

    Zhao CR, Miao DQ, Lai ZH, Gao C, Liu CC, Yang JY (2013) Two-dimensional color uncorrelated discriminant analysis for face recognition. Neurocomputing 113:251–261

    Article  Google Scholar 

  4. 4.

    Luo J, Crandall D (2006) Color object detection using spatial-color joint probability functions. IEEE Trans Image Process 15(6):1443–1453

    Article  Google Scholar 

  5. 5.

    Gevers T, Stokman H (2004) Robust histogram construction from color invariants for object recognition. IEEE Trans Pattern Anal Mach Intell 26(1):113–118

    Article  Google Scholar 

  6. 6.

    Diplaros A, Gevers T, Patras I (2006) Combining color and shape information for illumination-viewpoint invariant object recognition. IEEE Trans Image Process 15(1):1–11

    Article  Google Scholar 

  7. 7.

    Dong G, Xie M (2005) Color clustering and learning for image segmentation based on neural networks. IEEE Trans Neural Netw 16(4):925–936

    Article  Google Scholar 

  8. 8.

    Stokman H, Gevers T (2007) Selection and fusion of color models for image feature detection. IEEE Trans Pattern Anal Mach Intell 29(3):371–381

    Article  Google Scholar 

  9. 9.

    Park SC, Park MK, Kang MG (2003) Super-resolution image reconstruction: a technical overview. IEEE Signal Process Mag 20(3):21–36

    Article  Google Scholar 

  10. 10.

    Yang J, Wright J, Huang T, Ma Y, Image super-resolution as sparse representation of raw image patches. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp 1–8

  11. 11.

    Xiong LZ, Xu ZQ, Shi YQ (2017) An integer wavelet transform based scheme for reversible data hiding in encrypted images. Multidimens Syst Signal Process. doi:10.1007/s11045-017-0497-5

    Article  Google Scholar 

  12. 12.

    Xia Z, Wang X, Zhang L, Qin Z, Sun X, Ren K (2016) A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans Inf Forensics Secur 11(11):2594–2608

    Article  Google Scholar 

  13. 13.

    Li J, Li X, Yang B, Sun X (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Secur 10(3):507–518

    Article  Google Scholar 

  14. 14.

    Zheng Y, Jeon B, Xu D, Wu Q, Zhang H (2015) Image segmentation by generalized hierarchical fuzzy c-means algorithm. J Intell Fuzzy Syst 28(2):961–973

    Google Scholar 

  15. 15.

    Pan Z, Lei J, Zhang Y, Sun X, Kwong S (2016) Fast motion estimation based on content property for low-complexity h. 265/hevc encoder. IEEE Trans Broadcast 62(3):675–684

    Article  Google Scholar 

  16. 16.

    Pan Z, Zhang Y, Kwong S (2015) Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE Trans Broadcast 61(2):166–176

    Article  Google Scholar 

  17. 17.

    Pan Z, Jin P, Lei J, Zhang Y, Sun X, Kwong S (2016) Fast reference frame selection based on content similarity for low complexity hevc encoder. J Visual Commun Image Represent 40:516–524

    Article  Google Scholar 

  18. 18.

    Feng Z-H, Huber P, Kittler J, Christmas W, Wu X-J (2015) Random cascaded-regression copse for robust facial landmark detection. IEEE Signal Process Lett 1(22):76–80

    Article  Google Scholar 

  19. 19.

    Evangelidis GD, Psarakis EZ (2008) Parametric image alignment using enhanced correlation coefficient maximization. IEEE Trans Pattern Anal Mach Intell 30(10):1858–1865

    Article  Google Scholar 

  20. 20.

    Wright A.Wagner, J., Ganesh A, Zhou Z, Mobahi H, Ma Y (2012) Toward a practical face recognition system: Robust alignment and illumination by sparse representation. IEEE Trans Pattern Anal Mach Intell 34(2):372–386

    Article  Google Scholar 

  21. 21.

    Chen B, Shu H, Coatrieux G, Chen G, Sun X, Coatrieux JL (2015) Color image analysis by quaternion-type moments. J Math Imaging Vision 51(1):124–144

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Mohideen SK, Perumal SA, Sathik MM (2008) Image de-noising using discrete wavelet transform. Int J Comput Sci Netw Secur 8(1):213–216

    Google Scholar 

  23. 23.

    Dong W, Li X, Zhang D, Shi G (2011) Sparsity-based image denoising via dictionary learning and structural clustering. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp 457–464

  24. 24.

    Wang J, Li T, Shi Y-Q, Lian S, Ye J (2016) Forensics feature analysis in quaternion wavelet domain for distinguishing photographic images and computer graphics. Multimed Tools Appl. doi:10.1007/s11042-016-4153-0

    Article  Google Scholar 

  25. 25.

    Zhou Z, Wang Y, Wu QJ, Yang C-N, Sun X (2016) Effective and efficient global context verification for image copy detection. IEEE Trans Inf Forensics Secur 12(1):48–63

    Article  Google Scholar 

  26. 26.

    Zhili Z, Ching-Nung Y, Xingming S, Qi L, WU QJ (2016) Effective and efficient image copy detection with resistance to arbitrary rotation. IEICE Trans Inform Syst 99(6):1531–1540

    Google Scholar 

  27. 27.

    Chen Y, Hao C, Wu W, Wu E (2016) Robust dense reconstruction by range merging based on confidence estimation. Sci China Inform Sci 59(9):092103

    Article  Google Scholar 

  28. 28.

    Wang Xizhao, Xing Hong-Jie, Li Yan et al (2015) A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning. IEEE Trans Fuzzy Syst 23(5):1638–1654

    Article  Google Scholar 

  29. 29.

    Cheng Y, Jin Z, Chen H (2016) A fast and robust face recognition approach combining Gabor learned dictionaries and collaborative representation. Int J Mach Learn Cybern 7(1):47–52

    Article  Google Scholar 

  30. 30.

    Nouyed I, Poon B, Amin MA (2016) A study on the discriminating characteristics of Gabor phase-face and an improved method for face recognition. Int J Mach Learn Cybern 7(6):1115–1130

    Article  Google Scholar 

  31. 31.

    Gu B, Sun X, Sheng VS (2016) Structural minimax probability machine. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2016.2544779

    Article  Google Scholar 

  32. 32.

    Yuan C, Sun X, Lv R (2016) Fingerprint liveness detection based on multi-scale lpq and pca. China Commun 13(7):60–65

    Article  Google Scholar 

  33. 33.

    Gu B, Sheng VS, Wang Z, Ho D, Osman S, Li S (2016) A robust regularization path algorithm for v-support vector classification. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2016.2527796

    Article  Google Scholar 

  34. 34.

    Song XN, Feng ZH, Hu GS, Wu XJ (2017) Half-face dictionary integration for representation-based classification. IEEE Trans Cybern 47(1):142–152

    Article  Google Scholar 

  35. 35.

    Gu B, Sheng VS, Tay KY, Romano W, Li S (2015) Incremental support vector learning for ordinal regression. IEEE Trans Neural Netw Learn Syst 26(7):1403–1416

    MathSciNet  Article  Google Scholar 

  36. 36.

    Shih P, Liu C (2005) Comparative assessment of content-based face image retrieval in different color spaces. Int J Pattern Recog Artif Intell 19(7):873–893

    Article  Google Scholar 

  37. 37.

    Buchsbaum WH (1975) Color TV servicing[M], 3rd edn. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  38. 38.

    Yang J, Liu C, A (2008) Discriminant color space method for face representation and verification on a large-scale database, in: International Conference on Pattern Recognition 2008 (ICPR 2008), Tampa, Florida, USA

  39. 39.

    Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19:711–720

    Article  Google Scholar 

  40. 40.

    Zhang F (1997) Quaternions and matrices of quaternions. Linear Algebra Appl 251:21–57

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Denis P, Carre P, Fernandez-Maloigne C (2007) Spatial and spectral quaternionic approaches for colour images. Comput Vision Image Underst 107:74–87

    Article  Google Scholar 

  42. 42.

    Shi L, Funt B (2007) Quaternion color texture segmentation. Comput Vision Image Underst 107:88–96

    Article  Google Scholar 

  43. 43.

    Xu Y (2012) Quaternion-based discriminant analysis method for color face recognition. PLoS One 7(8):e43493. doi:10.1371/journal.pone.0043493

    Article  Google Scholar 

  44. 44.

    Pei SC, Chang JH, Ding JJ (2001) Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2-D complex FFT. IEEE Trans Signal Process 49(11):2783–2797

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Pei SC, Chang JH, Ding JJ (2004) Commutative reduced biquaternions and their Fourier transform for signal and image processing applications. IEEE Trans Signal Process 52(7):2012–2031

    MathSciNet  MATH  Article  Google Scholar 

  46. 46.

    Nicolas LB, Jerome M (2004) Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing. Signal Process 84(7):1177–1199

    MATH  Article  Google Scholar 

  47. 47.

    Yang J, Liu CJ, Yang JY (2010) What kind of color spaces is suitable for color face recognition? Neurocomputing 73:2140–2146

    Article  Google Scholar 

  48. 48.

    Kwak KC, Pedrycz W (2005) Face recognition using a fuzzy Fisherface classifier. Pattern Recognit 38(10):1717–1732

    Article  Google Scholar 

  49. 49.

    Keller JM, Gray MR, Givens JA (1985) A fuzzy k-nearest neighbor algorithm. IEEE Trans Syst Man Cybern 15(4):580–585

    Article  Google Scholar 

  50. 50.

    Song XN, Zheng YJ, Wu XJ, Yang XB, Yang JY (2010) A complete fuzzy discriminant analysis approach for face recognition. Appl Soft Comput 10:208–214

    Article  Google Scholar 

  51. 51.

    Yang J, Frangi AF, Yang JY, Zhang D, Jin Z (2005) KPCA plus LDA: a complete kernel fisher discriminant framework for feature extraction and recognition. IEEE Trans Pattern Anal Mach Intell 27(2):230–244

    Article  Google Scholar 

  52. 52.

    Song X, Yang J, Wu X et al (2011) An optimal symmetrical null space criterion of Fisher discriminant for feature extraction and recognition. Soft Comput 15(2):281–293

    MATH  Article  Google Scholar 

  53. 53.

    Atencia MA, Joya G, Sandoval F (2004) Parametric identification of robotic systems with stable time-varying Hopfield networks. Neural Comput Appl 13:270–280,

    MATH  Article  Google Scholar 

  54. 54.

    Hu ZN, Balakrishnan SN (2005) Parameter estimation in nonlinear systems using Hopfield neural networks. J Aircr 42(1):41–53

    Article  Google Scholar 

  55. 55.

    Alonso H, Mendonça T, Rocha P (2009) Hopfield neural networks for on-line parameter estimation. Neural Netw 22:450–462

    MATH  Article  Google Scholar 

  56. 56.

    Xu Y, Zhu Q, Fan Z, Wang Y, Pan J-S (2013) From the idea of “sparse representation” to a representation-based transformation method for feature extraction. Neurocomputing 113:168–176

  57. 57.

    Xu Y, Zhang D (2010) Represent and fuse bimodal biometric images at the feature level: complex-matrix-based fusion scheme. Opt Eng 49(3):037002

    Article  Google Scholar 

  58. 58.

    Senthilkumar R, Gnanamurthy RK (2014) A detailed survey on 2D and 3D still face and face video databases part I, in: International Conference on Communication and Signal Processing (ICCSP), India, 3-5 April 2014, pp 1405–1409

  59. 59.

    Martinez AM, Benavente R (1998) “The AR face database,” Centre de Visió per Computador (CVC), Universitat Autònoma de Barcelona, Barcelona, Spain, Tech. Rep. 24

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their constructive suggestions. This work was funded by the National Key Research and Development Program of China (2016YFD0401204), the National Science and Technology Support Program of China (No. 2015 BAD17B02), the Natural Science Foundation of Jiangsu Province (Grants no. BK20161135), China Postdoctoral Science Foundation (Grant no. 2016M590407), the Fundamental Research Funds for the Central Universities (Grant no. JUSRP115A29, JUSRP51618B), the Open Project Program of the Key Laboratory of Intelligent Perception, Systems for High-Dimensional Information of the Ministry of Education (No. JYB201603) and the Open Project Program of the Fujian Provincial Key Laboratory of Information Processing and Intelligent Control (Minjiang University, No. MJUKF201709).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaoning Song.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bao, S., Song, X., Hu, G. et al. Colour face recognition using fuzzy quaternion-based discriminant analysis. Int. J. Mach. Learn. & Cyber. 10, 385–395 (2019). https://doi.org/10.1007/s13042-017-0722-4

Download citation

Keywords

  • Quaternion-based vector
  • Fuzzy parameterized discriminant analysis
  • Colour image recognition