Limit cycle oscillation in aeroelastic systems and its adaptive fractional-order fuzzy control

  • Guanjun Li
  • Jinde Cao
  • Ahmed Alsaedi
  • Bashir Ahmad
Original Article
  • 107 Downloads

Abstract

Alaeroelastic system is a complex system which can produce limit cycles oscillation. In this paper, an adaptive fractional-order fuzzy controller is presented to suppress flutter in an alaeroelastic system. The studied system is a kind of nonlinear system with two freedoms (the plunge displacement and the pitch angle). A terminal sliding mode control is proposed, the fuzzy system parameters are updated by fractional-order differential equations and the stability of the closed-loop system is discussed by means of Lyapunov stability theory. Finally, numerical simulations are demonstrated to verify the effectiveness of proposed method.

Keywords

Alaeroelastic system Limit cycle oscillation Terminal sliding mode control Adaptive fractional-order fuzzy control 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61403157), the Natural Science Foundation for the Higher Education Institutions of Anhui Province of China (Grant No. KJ2016A665), the Foundation for Distinguished Young Talents in Higher Education of Anhui of China (Grant No. GXFXZD2016204), and the Natural Science Foundation of Huainan Normal University (Grant No. 2014XK19ZD, 2016xj52 ).

References

  1. 1.
    Ren FL, Cao F, Cao JD (2015) Mittag-leffler stability and generalized mittag-leffler stability of fractional-order gene regulatory networks. Neurocomputing 160:185–190CrossRefGoogle Scholar
  2. 2.
    Luo JH, Li GJ, Liu H (2014) Linear control of fractional-order financial chaotic systems with input saturation. Discret Dynam Nat Soc 2014:802429MathSciNetGoogle Scholar
  3. 3.
    Shen J, Lam J (2014) Non-existence of finite-time stable equilibria in fractional-order nonlinear systems. Automatica 50(2):547–551MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hua CC, Liu D, Guan XP (2014) Necessary and sufficient stability criteria for a class of fractional-order delayed systems. IEEE Trans Circ Syst II Exp Briefs 61(1):59–63Google Scholar
  5. 5.
    Liu H, Pan Y, Li S, et al (2016) Adaptive fuzzy backstepping control of fractional-order nonlinear systems[J]. IEEE Trans Syst Man Cybern: Syst. doi: 10.1109/TSMC.2640950 Google Scholar
  6. 6.
    Liu H, Li S, Sun Y, Wang H (2015) Prescribed performance synchronization for fractional-order chaotic systems. Chin Phys B 24(9):090505CrossRefGoogle Scholar
  7. 7.
    Song C, Cao JD (2014) Dynamics in fractional-order neural networks. Neurocomputing 142:494–498CrossRefGoogle Scholar
  8. 8.
    Chen J, Zeng Z, Jiang P (2014) Global Mittag-Leffler stability and synchronization of memristorbased fractional-order neural networks. Neural Netw 51:1–8CrossRefMATHGoogle Scholar
  9. 9.
    Huang X, Zhao Z, Wang Z, Li YX (2012) Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing 94:13–21CrossRefGoogle Scholar
  10. 10.
    Yu J, Hu C, Jiang HJ, Fan XL (2014) Projective synchronization for fractional neural networks. Neural Netw 49:87–95CrossRefMATHGoogle Scholar
  11. 11.
    Li GJ, Liu H (2016) Stability analysis and synchronization for a class of fractional-order neural networks. Entropy 18(2):55CrossRefGoogle Scholar
  12. 12.
    Rakkiyappan R, Velmurugan G, Cao JD (2015) Stability analysis of fractional-order complex-valued neural networks with time delays. Chaos Solitons Fractals 78:297–316MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Pan Y, Yu H (2016) Biomimetic hybrid feedback feedforward neural-network learning control.  IEEE Trans Neural Netw Learn Syst. doi: 10.1109/TNNLS.2527501 Google Scholar
  14. 14.
    Cao JD, Rakkiyappan R, Maheswari K, Chandrasekar A (2016) Exponential \(H_\infty\) filtering analysis for discrete-time switched neural networks with random delays using sojourn probabilities. Sci China Technol Sci 59(3):387–402CrossRefGoogle Scholar
  15. 15.
    Lu J, Wang Z, Cao J, et al (2012) Pinning impulsive stabilization of nonlinear dynamical networks with time-varying delay. Int J Bifurcat Chaos. doi: 10.1142/S0218127412501763
  16. 16.
    Li Y, Chen YQ, Podlubny I (2009) Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8):1965–1969MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Efe MO (2008) Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm. IEEE Trans Syst Man Cybern 38(6):1561–1570CrossRefGoogle Scholar
  18. 18.
    Cao JD, Yuan K, Li HX (2006) Global Asymptotical stability of generalized recurrent neural networks with multiple discrete delays and distributed delays. IEEE Trans Neural Netw 17(6):1646–1651CrossRefGoogle Scholar
  19. 19.
    Pan Y, Yu H (2016) Composite learning from adaptive dynamic surface control. IEEE Trans Autom Control 61(9):2603–2609MathSciNetCrossRefGoogle Scholar
  20. 20.
    Nayfeh AH, Mook DT (1995) Nonlinear oscillations. Wiley InterScience, NewYorkCrossRefMATHGoogle Scholar
  21. 21.
    Dowell EH (1981) Non-linear oscillator models in bluff body aeroelasticity. J Sound Vib 75:251–264CrossRefMATHGoogle Scholar
  22. 22.
    vanderPol B, vanderMark J (1927) Frequency demultiplication. Nature 120: 363–364Google Scholar
  23. 23.
    Domany E, Gendelman OV (2013) Dynamic responses and mitigation of limit cycle oscillations in Van der Pol-Duffing oscillator with nonlinear energy sink. J Sound Vib 21:5489–5507CrossRefGoogle Scholar
  24. 24.
    Lee YS, FVakakis A, Bergman LA, McFarland DM (2006) Suppression of limit cycle oscillations in the Van der Pol oscillator by means of passive nonlinear energy sinks(NESs). Struct Control Health Monit 13:41–75Google Scholar
  25. 25.
    Gendelman OV, Bar T (2010) Bifurcations of self-excitation regimes in a Van der Pol oscillator with a nonlinear energy sink. Physica D 239:220–229MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Dunnmon JA, Stanton SC, Mann BP et al (2011) Power extraction from aeroelastic limit cycle oscillations. J Fluids Struct 27:1182–1198CrossRefGoogle Scholar
  27. 27.
    Drachinsky A, Raveh DE (2016) Limit-cycle oscillations of a pre-tensed membrane strip. J Fluids Struct 60:1–22CrossRefGoogle Scholar
  28. 28.
    Dardel M, Bakhtiari-Nejad F (2010) A reduced order of complete aeroelastic model for limit cycle oscillations. Aerosp Sci Technol 14:95–105CrossRefGoogle Scholar
  29. 29.
    Eftekhari SA, Bakhtiari-Nejad F, Dowell EH (2014) Damage detection of an aeroelastic panel using limit cycle oscillation analysis. Int J Non Linear Mech 58:99–110CrossRefGoogle Scholar
  30. 30.
    Bhoir NG, Singh SN (2004) Output feedback nonlinear control of an aeroelastic with unsteady aerodynamics. Aerosp Sci Technol 8:195–205CrossRefMATHGoogle Scholar
  31. 31.
    Strganac TW, Thompson DE (2008) Identification and control of limit cycle oscillations in aeroelastic systems. J Guid Control Dyn 23:1127–1133CrossRefGoogle Scholar
  32. 32.
    Gujjula S, Singh SN, Yim W (2005) Adaptive and neural control of a wing section using leading- and trailing-edge surfaces. Aerosp Sci Technol 9:161–171CrossRefMATHGoogle Scholar
  33. 33.
    Chen CL, Chang CW, Yau HT (2013) Terminal sliding mode control for aeroelastic systems. Nonlinear Dyn 70:2015–2026MathSciNetCrossRefGoogle Scholar
  34. 34.
    Chen CL, Peng CC, Yau HT (2014) High-order sliding mode controller with backstepping design for aeroelastic systems. Commun Nonlinear Sci Numer Simulat 17:1813–1823MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Wen GH, Hu G, Yu WW, Cao JD, Chen GR (2013) Consensus tracking for higher-order multi-agent systems with switching directed topologies and occasionally missing control inputs. Syst Control Lett 62(12):1151–1158MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Balasubramaniam P, Syed Ali M (2011) Stochastic stability of uncertain fuzzy recurrent neural networks with Markovian jumping parameters. Int J Comput Math 88(5):892–904Google Scholar
  37. 37.
    Pan Y et al (2016) Hybrid feedback feedforward: An efficient design of adaptive neural network control. Neural Netw 76:122–134CrossRefGoogle Scholar
  38. 38.
    Lu JQ, Ho DW, Cao JD (2010) A unified synchronization criterion for impulsive dynamical networks. Automatica 46(7):1215–1221MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Balasubramaniam P, Syed Ali M (2010) Robust exponential stability of uncertain fuzzy Cohen-Grossberg neural networks with time-varying delays. Fuzzy Sets Syst 161:608–618Google Scholar
  40. 40.
    Pan Y, Sun T, Yu H (2016) Composite adaptive dynamic surface control using online recorded data. Int J Robust Nonlinear Control. doi: 10.1002/rnc.3541
  41. 41.
    Zhang XL, Zhang FY (2012) Synchronizing uncertain chaotic systems by using adaptive fuzzy chattering free sliding mode control. J Comput Inf Syst 8:10509–10515Google Scholar
  42. 42.
    Xiang W, Yugao HF (2010) Second-order terminal sliding mode controller for a class of chaotic systems with unmatched uncertainties. Commun Nonlinear Sci Numer Simulat 15:3241–3247MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Balasubramaniam P, Syed Ali M (2011) Stability analysis of Takagi-Sugeno stochastic fuzzy Hopfield neural networks with discrete and distributed time varying delays. Neurocomputing 74(10):1520–1526Google Scholar
  44. 44.
    Pan YP, Yu HY, Sun TR (2015) Global asymptotic stabilization using adaptive fuzzy PD control. IEEE Trans Cybern 45(3):574–582CrossRefGoogle Scholar
  45. 45.
    Liu H, Li S, Cao J, et al (2017) Adaptive fuzzy prescribed performance controller design for a class of uncertain fractional-order nonlinear systems with external disturbances. Neurocomputing  219:422–430CrossRefGoogle Scholar
  46. 46.
    Singh SN, Brenner M (2003) Limit cycle oscillation and orbital stability in aeroelastic systems with torsional nonlinearity. Nonlinear Dyn 31:435–450CrossRefMATHGoogle Scholar
  47. 47.
    Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Academic Press, New YorkMATHGoogle Scholar
  48. 48.
    Duarte-Mermoud MA, Aguila-Camacho N, Gallegos JA, Castro-Linares R (2015) Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun Nonlinear Sci Numer Simul 22:650–659MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Yu SH, Yu XH, Shirinzadeh BJ, Mau ZH (2005) Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41:1957–1964MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Liu LP, Han ZZ, Li WL (2012) Global sliding mode control and application in chaotic systems. Nonlinear Dyn 56:193–198MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Guanjun Li
    • 1
    • 2
  • Jinde Cao
    • 2
    • 3
  • Ahmed Alsaedi
    • 4
  • Bashir Ahmad
    • 4
  1. 1.Department of Applied MathematicsHuainan Normal UniversityHuainanChina
  2. 2.School of MathematicsSoutheast UniversityNanjingChina
  3. 3.Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations