Skip to main content
Log in

A robust self-learning PID control system design for nonlinear systems using a particle swarm optimization algorithm

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

This study presents a robust self-learning proportional-integral-derivative (RSPID) control system design for nonlinear systems. This RSPID control system comprises a self-learning PID (SPID) controller and a robust controller. The gradient descent method is utilized to derive the on-line tuning laws of SPID controller; and the \( \, H_{\infty } \, \) control technique is applied for the robust controller design so as to achieve robust tracking performance. Moreover, in order to achieve fast learning of PID controller, a particle swarm optimization (PSO) algorithm is adopted to search the optimal learning-rates of PID adaptive gains. Finally, two nonlinear systems, a two-link manipulator and a chaotic system are examined to illustrate the effectiveness of the proposed control algorithm. Simulation results show that the proposed control system can achieve favorable control performance for these nonlinear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Astrom KJ, Hagglund T (1988) Automatic tuning of PID controllers. Instrument Society of America, Research Triangle Park

  2. Ho WK, Hang CC, Zhou JH (1997) Self-tuning PID control of a plant with under-damped response with specifications on gain and phase margins. IEEE Trans Control Syst Technol 5(4):446–452

    Article  Google Scholar 

  3. Ren TJ, Chen TC, Chen CJ (2008) Motion control for a two-wheeled vehicle using a self-tuning PID controller. Control Eng Pract 16:365–375

    Article  Google Scholar 

  4. Vagia M, Tzes A (2008) Robust PID control design for an electrostatic micromechanical actuator with structured uncertainty. IET Control Theory Appl 2(5):365–373

    Article  MathSciNet  Google Scholar 

  5. Yu DL, Chang TK, Yu DW (2005) Fault tolerant control of multivariable processes using auto-tuning PID controller. IEEE Trans Syst Man Cybern B 35(1):32–43

    Article  Google Scholar 

  6. Juang JG, Huang MT, Lin WK (2008) PID control using presearched genetic algorithms for a MIMO system. IEEE Trans Syst Man Cybern C 38(5):716–727

    Article  Google Scholar 

  7. Wang J, Zhang C, Jing Y (2008) Fuzzy immune self-tuning PID control of HVAC system. IEEE Int Conf Mech Autom 678–683

  8. Bandyopadhyay R, Chakraborty UK, Patranabis D (2001) Autotuning a PID controller: a fuzzy-genetic approach. J Syst Archit 47:663–673

    Article  Google Scholar 

  9. Harinath E, Mann GKI (2008) Design and tuning of standard additive model based fuzzy PID controllers for multivariable process systems. IEEE Trans Syst Man Cybern B 38(3):667–674

    Article  Google Scholar 

  10. Kennedy J, Eberhart RC (1995) Particle swarm optimization. IEEE Int Conf Neural Netw Perth, Australia 4:1942–1948

    Google Scholar 

  11. Eberhart RC, Shi Y (2001) Particle swarm optimization: developments, applications and resources. In: Proceedings of congress on evolution computation, Seoul, pp 81–75

  12. Juang CF (2004) A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans Syst Man Cybern B Cybern 34(2):997–1006

    Google Scholar 

  13. Heo JS, Wang K, Lee Y, Garduno-Ramirez R (2006) Multiobjective control of power plants using particle swarm optimization techniques. IEEE Trans Energy Convers 21(2):552–561

    Article  Google Scholar 

  14. Lin FJ, Teng LT, Chu H (2008) A robust recurrent wavelet neural network controller with improved particle swarm optimization for linear synchronous motor drive. IEEE Trans Power Electron 23(6):3067–3078

    Article  Google Scholar 

  15. Kim TH, Maruta I, Sugie T (2008) Robust PID controller tuning based on the constrained particle swarm optimization. Automatica 44:1104–1110

    Article  MathSciNet  Google Scholar 

  16. Chang WD, shih SP (2010) PID controller design of nonlinear systems using an improved particle swarm optimization approach. Commun Nonlinear Sci Numer Simul 15:3632–3639

    Article  MATH  Google Scholar 

  17. Chen BS, Lee CH (1996) H tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach. IEEE Trans Fuzzy Syst 4(1):32–43

    Article  Google Scholar 

  18. Wang SD, Lin CK (2000) Adaptive tuning of the fuzzy controller for robots. Fuzzy Sets Syst 110:351–363

    Article  Google Scholar 

  19. Erlic M, Lu WS (1995) A reduced-order adaptive velocity observer for manipulator control. IEEE Trans Robot Autom 11(2):293–303

    Article  Google Scholar 

  20. Lu J, Chen G, Cheng D (2002) Bridge the gap between the Lorenz system and the Chen system. Int J Bifurcat Chaos 12:2917–2926

    Article  MathSciNet  Google Scholar 

  21. Lin CM, Hsu CF (2004) Adaptive fuzzy sliding-mode control for induction servomotor systems. IEEE Trans Energy Convers 19(2):362–368

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Min Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CM., Li, MC., Ting, AB. et al. A robust self-learning PID control system design for nonlinear systems using a particle swarm optimization algorithm. Int. J. Mach. Learn. & Cyber. 2, 225–234 (2011). https://doi.org/10.1007/s13042-011-0021-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-011-0021-4

Keywords

Navigation