Skip to main content
Log in

From foundational issues in artificial intelligence to intelligent memristive nano-devices

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Since its conception in the mid 1950s, artificial intelligence has always been a hugely exciting, cross-disciplinary research endeavor. As the technology-driven modern world creates artifacts demonstrating increasing levels of sophistication and, perhaps, intelligence, it is necessary for practitioners in several fields to be familiar, to some degree, with some of the fundamental problems and challenges in the field of artificial intelligence. The goal in this paper is to highlight some of the foundational issues in the field of artificial intelligence and to reflect on the role of artificial intelligence in the context of a rapidly advancing modern world where breakthroughs such as memristive nano-devices enthuse practitioners beyond the realms of science fiction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adleman L (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024

    Article  Google Scholar 

  2. Albus JS, Bekey GA, Holland JH, Kanwisher NG, Krichmar JL, Mishkin M, Modha DS, Raichle ME, Shepherd GM, Tononi G (2007) A proposal for a decade of the mind initiative. Science 317(5843):1321

    Google Scholar 

  3. Anderson M, Anderson L (2010) Robot be good: a call for ethical autonomous machines. Sci Am October:15–24

  4. Aono M, Hara M, Aihara K, Munakata T (2010) Amoeba-based emergent computing: combinatorial optimization and autonomous meta-problem solving. Int J Unconv Comput 6:89–108

    Google Scholar 

  5. Baruchi I, Ben-Jacob E (2007) Towards neuro-memory-chip: imprinting multiple memories in cultured neural networks. Phys Rev E 75. Article ID 050901

  6. Berrar D, Sato N, Schuster A (2010) Quo vadis artificial intelligence? Adv Artif Intell. doi:10.1155/2010/629869

  7. Brighton H, Selina H (2003) Introducing artificial intelligence. Icon Books, London

    Google Scholar 

  8. Brooks R (1990) Elephants don’t play chess. Robot Auton Syst 6:3–15

    Article  Google Scholar 

  9. Chua L (1971) Memristor—the missing circuit element. IEEE Trans Circuit Theory 18(5):507–519

    Article  Google Scholar 

  10. Chua L, Kang S (1976) Memristive devices and systems. Proc IEEE 64:209–223

    Article  MathSciNet  Google Scholar 

  11. Cohen DI (1996) Introduction to computer theory, 2nd edn. Wiley, New York

  12. Desai S, Rolston J, Guo L, Potter S (2010) Improving impedance of implantable microwire multielectrode arrays by ultrasonic electroplating of durable plantinum black. Front Neuroeng 3(5). doi:10.3389/fneng.2010.00005

  13. Feser E (2006) Philosophy of mind: a beginner’s guide. Oneworld Publications

  14. Friedman R (2009) Reverse engineering the brain. Biomed Comput Rev 5(2):10–17

    Google Scholar 

  15. Grover L (1996) A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th annual ACM symposium on the theory of computing (STOC), pp 212–219

  16. Harnad S (1990) The symbol grounding problem. Physica D 42:335–346

    Article  Google Scholar 

  17. Kotchetkov IS, Hwang BY, Appelboom G, Kellner CP, Connolly Jr ES (2010) Brain-computer interfaces: military, neurosurgical, and ethical perspective. Neurosurg Focus 28(5:E25) (available online)

  18. Lipton J (1995) DNA solution to hard computational problems. Science 268:542–545

    Article  Google Scholar 

  19. Mallon E, Pratt S, Franks N (2001) Individual and collective decision-making during nest site selection by the ant Leptothorax albipennis. Behav Ecol Sociobiol 50:352–359

    Article  Google Scholar 

  20. Mermin DN (2007) Quantum computer science: an introduction. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  21. Negnevitsky M (2004) Artificial intelligence—a guide to intelligent systems, 2nd edn. Addison Wesley, Harlow

  22. Newell A, Simon HA (1976) Computer science as empirical inquiry: symbols and search. Commun ACM 19(3):113–126

    Article  MathSciNet  Google Scholar 

  23. Pershin Y, La Fontaine S, Di Ventra M (2008) Memristive model of amoeba’s learning. arXiv:0810.4179v2 [q-bio.CB]

  24. Pfeifer R, Scheier C (2000) Understanding intelligence. The MIT Press, Cambridge

    Google Scholar 

  25. Pironio S, Acin A, Massar S, Boyer de la Giroday A, Matsukevich D, Maunz P, Olmschenk S (2010) Random numbers certified by Bell’s theorem. Nature 464:1021–1024

    Google Scholar 

  26. Schank R, Abelson R (1977) Scripts, plans, goals and understanding: inquiry into human knowledge structures. Psychology Press

  27. Schuster A (2005) DNA databases. BioSystems 81(3):234–246

    Article  Google Scholar 

  28. Schuster A (2007) Intelligent computing everywhere. Springer-Verlag, London

    Book  Google Scholar 

  29. Schuster A (2008) Robust intelligent systems. Springer-Verlag, London

    Book  Google Scholar 

  30. Schuster A (2008) Robustness in nature as a design principle for artificial intelligence. In: Schuster A (ed) Robust intelligent systems. Springer, New York, pp 165–188

  31. Schuster A, Shapcott M, Adamson K, Bell DA (2000) A multiple approach to data analysis and uncertainty management in knowledge-based systems. Int J Intell Syst 15(2):93–116

    Google Scholar 

  32. Schuster A, Yamaguchi Y (2009) The survival of the fittest and the reign of the most robust—in biology and elsewhere. Minds Mach 19(3):361–389

    Google Scholar 

  33. Searle J (1980) Minds, brains and programs. Behav Brain Sci 3(3):417–457

    Article  Google Scholar 

  34. Shor P (1994) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings of the 35th annual symposium on foundations of computer science, Santa Fe, NM, pp 20–22

  35. Snider G, Williams R (2007) Nano/CMOS architectures using a field-programmable nanowire interconnect. Nanotechnology 18, 035204

    Google Scholar 

  36. Snider GS (2008) Cortical computing with memristive nanodevices. Sci-DAC Rev 10:58–65

    Google Scholar 

  37. Stix G (2005) Best-kept secrets. Sci Am 292:65–69

    Google Scholar 

  38. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nat Biotechnol 453:80–83

    Google Scholar 

  39. Tagkopoulos I, Liu Y-C, Tavazoie S (2008) Anticipatory behavior within microbial genetic networks. Science 320(5881):1313–1317

    Google Scholar 

  40. Turing A (1950) Computing machinery and intelligence. Mind Mach 59:433–460

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfons Schuster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuster, A., Yamaguchi, Y. From foundational issues in artificial intelligence to intelligent memristive nano-devices. Int. J. Mach. Learn. & Cyber. 2, 75–87 (2011). https://doi.org/10.1007/s13042-011-0016-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-011-0016-1

Keywords

Navigation