Skip to main content

Advertisement

Log in

Treatment of Stroke at a Delayed Timepoint with a Repurposed Drug Targeting Sigma 1 Receptors

  • Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Sigma 1 receptors are intracellular chaperone proteins that have been explored as a subacute treatment to enhance post-stroke recovery. We recently identified the antitussive oxeladin as a selective sigma 1 receptor agonist with the ability to stimulate the release of brain-derived neurotrophic factor from neurons in vitro. In this study, we hypothesized that oral oxeladin citrate would stimulate BDNF secretion and improve stroke outcomes when administered to male rats starting 48 h after transient middle cerebral artery occlusion. Oxeladin did not alter blood clotting and crossed the blood brain barrier within 30 min of oral administration. Rats underwent 90 min of transient middle cerebral artery occlusion. Forty-eight hours later rats began receiving daily oxeladin (135 mg/kg) for 11 days. Oxeladin significantly improved neurological function on days 3, 7, and 14 following MCAO. Infarct size was not altered by a single dose, but the final extent of infarct after 14 days was decreased. However, there was no significant reduction in astrogliosis or microgliosis compared to vehicle-treated control rats. In agreement with in vitro studies, oxeladin increased the amount of mature BDNF in the cerebral cortex 2, 6, and 24 h after single oral dose. However, the increase in BDNF did not result in increases in cellular proliferation in the subventricular zone or dentate gyrus when compared to vehicle-treated controls. These results suggest that oxeladin may reduce the extent of infarct expansion in the subacute phase of stroke, although this action does not appear to involve a reduction in inflammation or increased cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The corresponding author will make data available upon request.

References

  1. Goenka L, Uppugunduri CR, Satyanarayana SKS, George M. Neuroprotective agents in Acute Ischemic Stroke-A Reality Check. Biomed Pharmacother. 2019;109:2539–47.

    Article  PubMed  Google Scholar 

  2. Narayan SK, et al. Preclinical animal studies in ischemic stroke: Challenges and some solutions. Animal Model Exp Med. 2021;4(2):104–15.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen C, et al. Clinical effects and safety of edaravone in treatment of acute ischaemic stroke: A meta-analysis of randomized controlled trials. J Clin Pharm Ther. 2021;46(4):907–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chollet F, et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol. 2011;10(2):123–30.

    Article  CAS  PubMed  Google Scholar 

  5. Malhotra K, et al. Minocycline for acute stroke treatment: a systematic review and meta-analysis of randomized clinical trials. J Neurol. 2018;265(8):1871–9.

    Article  CAS  PubMed  Google Scholar 

  6. Lundstrom E, et al. Effects of Fluoxetine on Outcomes at 12 Months After Acute Stroke: Results From EFFECTS, a Randomized Controlled Trial. Stroke. 2021;52(10):3082–7.

    Article  PubMed  Google Scholar 

  7. Strickland BA, et al. Neuroprotective effect of minocycline against acute brain injury in clinical practice: A systematic review. J Clin Neurosci. 2021;86:50–7.

    Article  CAS  PubMed  Google Scholar 

  8. Ghosh D et al. Drug repurposing for stroke intervention. Drug Discov Today. 2022.

  9. Lyden PD. Cerebroprotection for Acute Ischemic Stroke: Looking Ahead. Stroke. 2021;52(9):3033–44.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Desai SM, Jha RM, Linfante I. Collateral Circulation Augmentation and Neuroprotection as Adjuvant to Mechanical Thrombectomy in Acute Ischemic Stroke. Neurology. 2021;97(20 Suppl 2):S178–84.

    Article  PubMed  Google Scholar 

  11. Schmidt HR, Kruse AC. The Molecular Function of sigma Receptors: Past, Present, and Future. Trends Pharmacol Sci. 2019;40(9):636–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ryskamp DA, et al. Neuronal Sigma-1 Receptors: Signaling Functions and Protective Roles in Neurodegenerative Diseases. Front Neurosci. 2019;13:862.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Penke B, Fulop L, Szucs M, Frecska E. The Role of Sigma-1 Receptor, an Intracellular Chaperone in Neurodegenerative Diseases. Curr Neuropharmacol. 2018;16(1):97–116.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bogar F, Fulop L, Penke B. Novel Therapeutic Target for Prevention of Neurodegenerative Diseases: Modulation of Neuroinflammation with Sig-1R Ligands. Biomolecules. 2022;12(3):363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maurice T, Lockhart BP. Neuroprotective and anti-amnesic potentials of sigma (sigma) receptor ligands. Prog Neuropsychopharmacol Biol Psychiatry. 1997;21(1):69–102.

    Article  CAS  PubMed  Google Scholar 

  16. Li Z, et al. DHEA-neuroprotection and -neurotoxicity after transient cerebral ischemia in rats. J Cereb Blood Flow Metab. 2009;29(2):287–96.

    Article  CAS  PubMed  Google Scholar 

  17. Ruscher K, et al. The sigma-1 receptor enhances brain plasticity and functional recovery after experimental stroke. Brain : a journal of neurology. 2011;134(Pt 3):732–46.

    Article  PubMed  Google Scholar 

  18. Katnik C, et al. Treatment with afobazole at delayed time points following ischemic stroke improves long-term functional and histological outcomes. Neurobiol Dis. 2014;62:354–64.

    Article  CAS  PubMed  Google Scholar 

  19. Urfer R, et al. Phase II trial of the Sigma-1 receptor agonist cutamesine (SA4503) for recovery enhancement after acute ischemic stroke. Stroke. 2014;45(11):3304–10.

    Article  CAS  PubMed  Google Scholar 

  20. Nguyen L, et al. Sigma-1 Receptors and Neurodegenerative Diseases: Towards a Hypothesis of Sigma-1 Receptors as Amplifiers of Neurodegeneration and Neuroprotection. Adv Exp Med Biol. 2017;964:133–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. An Y, et al. Activation of the sigma-1 receptor attenuates blood-brain barrier disruption by inhibiting amyloid deposition in Alzheimer’s disease mice. Neurosci Lett. 2022;774:136528.

    Article  CAS  PubMed  Google Scholar 

  22. Li W, et al. Protective Mechanism and Treatment of Neurogenesis in Cerebral Ischemia. Neurochem Res. 2020;45(10):2258–77.

    Article  CAS  PubMed  Google Scholar 

  23. Sims SK, et al. Brain-Derived Neurotrophic Factor and Nerve Growth Factor Therapeutics for Brain Injury: The Current Translational Challenges in Preclinical and Clinical Research. Neural Plast. 2022;2022:3889300.

    Article  PubMed  PubMed Central  Google Scholar 

  24. He J, et al. Molecular mechanism of estrogen-mediated neuroprotection in the relief of brain ischemic injury. BMC Genet. 2018;19(1):46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schreihofer DA, Oppong-Gyebi A. Genistein: mechanisms of action for a pleiotropic neuroprotective agent in stroke. Nutr Neurosci. 2019;22(6):375–91.

    Article  CAS  PubMed  Google Scholar 

  26. Shi N, Zhu C, Li L. Rehabilitation Training and Resveratrol Improve the Recovery of Neurological and Motor Function in Rats after Cerebral Ischemic Injury through the Sirt1 Signaling Pathway. Biomed Res Int. 2016;2016:1732163.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu K, et al. Acute Administration of Metformin Protects Against Neuronal Apoptosis Induced by Cerebral Ischemia-Reperfusion Injury via Regulation of the AMPK/CREB/BDNF Pathway. Front Pharmacol. 2022;13:832611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dalwadi DA, et al. Brain-derived neurotrophic factor for high-throughput evaluation of selective Sigma-1 receptor ligands. J Pharmacol Toxicol Methods. 2022;113:107129.

    Article  CAS  PubMed  Google Scholar 

  29. Kim S, et al. Vivo-Morpholino knockdown of alphaIIb: A novel approach to inhibit thrombocyte function in adult zebrafish. Blood Cells Mol Dis. 2010;44(3):169–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dalwadi DA, Kim S, Schetz JA. Activation of the sigma-1 receptor by haloperidol metabolites facilitates brain-derived neurotrophic factor secretion from human astroglia. Neurochem Int. 2017;105:21–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oppong-Gyebi A, et al. Long-term hypogonadism diminishes the neuroprotective effects of dietary genistein in young adult ovariectomized rats after transient focal ischemia. J Neurosci Res. 2022;100(2):598–619.

    Article  CAS  PubMed  Google Scholar 

  32. Borlongan CV, Sanberg PR. Elevated body swing test: a new behavioral parameter for rats with 6-hydroxydopamine-induced hemiparkinsonism. J Neurosci. 1995;15(7 Pt 2):5372–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bederson JB, et al. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke. 1986;17(3):472–6.

    Article  CAS  PubMed  Google Scholar 

  34. Swanson RA, et al. A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab. 1990;10(2):290–3.

    Article  CAS  PubMed  Google Scholar 

  35. Sauerzweig S, Baldauf K, Braun H, Reymann KG. Time-dependent segmentation of BrdU-signal leads to late detection problems in studies using BrdU as cell label or proliferation marker. J Neurosci Methods. 2009;177(1):149–59.

    Article  CAS  PubMed  Google Scholar 

  36. Ajmo CT Jr, et al. Sigma receptor activation reduces infarct size at 24 hours after permanent middle cerebral artery occlusion in rats. Curr Neurovasc Res. 2006;3(2):89–98.

    Article  CAS  PubMed  Google Scholar 

  37. Ruscher K, et al. Effects of the sigma-1 receptor agonist 1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)-piperazine dihydro-chloride on inflammation after stroke. PLoS ONE. 2012;7(9):e45118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schetz JA, et al. A prototypical Sigma-1 receptor antagonist protects against brain ischemia. Brain Res. 2007;1181:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sato S, Kawamata T, Kobayashi T, Okada Y. Antidepressant fluvoxamine reduces cerebral infarct volume and ameliorates sensorimotor dysfunction in experimental stroke. NeuroReport. 2014;25(10):731–6.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao Q, et al. The Protective Effects of Dexmedetomidine against Hypoxia/Reoxygenation-Induced Inflammatory Injury and Permeability in Brain Endothelial Cells Mediated by Sigma-1 Receptor. ACS Chem Neurosci. 2021;12(11):1940–7.

    Article  CAS  PubMed  Google Scholar 

  41. Shen YC, et al. Dimemorfan protects rats against ischemic stroke through activation of sigma-1 receptor-mediated mechanisms by decreasing glutamate accumulation. J Neurochem. 2008;104(2):558–72.

    CAS  PubMed  Google Scholar 

  42. Werling LL, Lauterbach EC, Calef U. Dextromethorphan as a potential neuroprotective agent with unique mechanisms of action. Neurologist. 2007;13(5):272–93.

    Article  PubMed  Google Scholar 

  43. Chou YC, et al. Binding of dimemorfan to sigma-1 receptor and its anticonvulsant and locomotor effects in mice, compared with dextromethorphan and dextrorphan. Brain Res. 1999;821(2):516–9.

    Article  CAS  PubMed  Google Scholar 

  44. Sanchez-Blazquez P, Pozo-Rodrigalvarez A, Merlos M, Garzon J. The Sigma-1 Receptor Antagonist, S1RA, Reduces Stroke Damage, Ameliorates Post-Stroke Neurological Deficits and Suppresses the Overexpression of MMP-9. Mol Neurobiol. 2018;55(6):4940–51.

    Article  CAS  PubMed  Google Scholar 

  45. Wu NH, et al. Emerging Benefits: Pathophysiological Functions and Target Drugs of the Sigma-1 Receptor in Neurodegenerative Diseases. Mol Neurobiol. 2021;58(11):5649–66.

    Article  CAS  PubMed  Google Scholar 

  46. Kikuchi-Utsumi K, Nakaki T. Chronic treatment with a selective ligand for the sigma-1 receptor chaperone, SA4503, up-regulates BDNF protein levels in the rat hippocampus. Neurosci Lett. 2008;440(1):19–22.

    Article  CAS  PubMed  Google Scholar 

  47. Fujimoto M, et al. Sigma-1 receptor chaperones regulate the secretion of brain-derived neurotrophic factor. Synapse. 2012;66(7):630–9.

    Article  CAS  PubMed  Google Scholar 

  48. Liu W, et al. Brain-Derived Neurotrophic Factor and Its Potential Therapeutic Role in Stroke Comorbidities. Neural Plast. 2020;2020:1969482.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ravina K, et al. Intracerebral Delivery of Brain-Derived Neurotrophic Factor Using HyStem((R))-C Hydrogel Implants Improves Functional Recovery and Reduces Neuroinflammation in a Rat Model of Ischemic Stroke. Int J Mol Sci. 2018;19(12):3782.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ploughman M, et al. Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke. 2009;40(4):1490–5.

    Article  CAS  PubMed  Google Scholar 

  51. Zhao X, et al. Sigma-1 receptor protects against endoplasmic reticulum stress-mediated apoptosis in mice with cerebral ischemia/reperfusion injury. Apoptosis. 2019;24(1–2):157–67.

    Article  PubMed  Google Scholar 

  52. Morihara R, et al. Protective effect of a novel sigma-1 receptor agonist is associated with reduced endoplasmic reticulum stress in stroke male mice. J Neurosci Res. 2018;96(10):1707–16.

    Article  CAS  PubMed  Google Scholar 

  53. Kanno H, et al. Chaperone-Mediated Autophagy in Neurodegenerative Diseases and Acute Neurological Insults in the Central Nervous System. Cells. 2022;11(7):1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang Y, et al. Activation of Sigma-1 Receptor Enhanced Pericyte Survival via the Interplay Between Apoptosis and Autophagy: Implications for Blood-Brain Barrier Integrity in Stroke. Transl Stroke Res. 2020;11(2):267–87.

    Article  CAS  PubMed  Google Scholar 

  55. Ozawa H, Fukuda H, Otsuki I, Chiba S. Antitussive activity and acute toxicity of 2-(2-diethylamino-ethoxy)ethyl alpha, alpha-diethylphenylacetate (oxeladin). Yakugaku Zasshi. 1962;82:1314–7.

    Article  CAS  PubMed  Google Scholar 

  56. Talbot J, Waller P. Sephens’ Detection of New Adverse Drug Reactions. 6 ed. 2004: John Wiley and Sons, Ltd.

  57. Nguyen L, et al. Dextromethorphan: An update on its utility for neurological and neuropsychiatric disorders. Pharmacol Ther. 2016;159:1–22.

    Article  CAS  PubMed  Google Scholar 

  58. Lee SJ, Yeom SY, Lee JY, Park C. Application of the antitussive agents oxelaidin and butamirate as anti-glioma agents. Sci Rep. 2021;11(1):10145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Fen Sun for help in performance of these experiments.

Funding

This work was supported by the National Institutes of Health NIH 1R21NS095271-01A1 to D.A.S. and J.A.S.

Author information

Authors and Affiliations

Authors

Contributions

Derek A. Schreihofer: Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Project administration; Resources; Supervision; Validation; Visualization; Writing—original draft; Writing—review & editing. Dhwanil Dilwadi: Investigation. Seongcheol Kim: Investigation, Formal analysis. Daniel Metzger: Investigation, Formal analysis. Anthony Oppong-Gyebi: Investigation, Formal analysis. Paromita Das-Earl: Investigation, Methodology. John A. Schetz: Conceptualization; Data curation; Formal analysis; Funding acquisition; Methodology; Project administration; Resources; Supervision; Validation.

Corresponding author

Correspondence to Derek A. Schreihofer.

Ethics declarations

Ethical Approval

All procedures were approved by the UNTHSC Institutional Animal Care and Use Committee in accordance with the Guide for the Care and Use of Laboratory Animals.

Competing Interests

Derek A. Schreihofer wishes to declare on behalf of himself and John A. Schetz (deceased).

U.S. Provisional Patent Application.

Title: Drug Repurposing For Delayed Treatment of Ischemic Stroke.

Serial NO.: 63/308,259.

Filing data: February 9, 2022.

Inventors: D. Schreihofer and J. Schetz.

HSC Ref. No.: 2021–016-01.PRO.

Attorney File No.: UNTH.P0008US.P1.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

John A. Schetz is deceased. This paper is dedicated to his memory.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schreihofer, D.A., Dalwadi, D., Kim, S. et al. Treatment of Stroke at a Delayed Timepoint with a Repurposed Drug Targeting Sigma 1 Receptors. Transl. Stroke Res. (2023). https://doi.org/10.1007/s12975-023-01193-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12975-023-01193-x

Keywords

Navigation