Skip to main content
Log in

Acetylation of p53 in the Cerebral Cortex after Photothrombotic Stroke

  • Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

p53 expression and acetylation are crucial for the survival and death of neurons in penumbra. At the same time, the outcome of ischemia for penumbra cells depends largely on the histone acetylation status, but the effect of histone acetyltransferases and deacetylases on non-histone proteins like p53 is largely understudied. With combined in silico and in vitro approach, we have identified enzymes capable of acetylation/deacetylation, distribution, stability, and pro-apoptotic activity of p53 in ischemic penumbra in the course of post-stroke recovery, and also detected involved loci of acetylation in p53. The dynamic regulation of the acetylation of p53 at lysine 320 is controlled by acetyltransferase PCAF and histone deacetylases HDAC1 and HDAC6. The in silico simulation have made it possible to suggest the acetylation of p53 at lysine 320 acetylation may facilitate the shuttling of p53 between the nucleus and cytoplasm in penumbra neurons. Acetylation of p53 at lysine 320 is more preferable than acetylation at lysine 373 and probably promotes survival and repair of penumbra neurons after stroke. Strategies to increase p53 acetylation at lysine 320 via increasing PCAF activity, inhibiting HDAC1 or HDAC6, inhibiting p53, or a combination of these interventions may have therapeutic benefits for stroke recovery and would be promising for neuroprotective therapy of stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Demyanenko S, Sharifulina S. The role of post-translational acetylation and deacetylation of signaling proteins and transcription factors after cerebral ischemia: facts and hypotheses. IJMS. 2021;22:7947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ho TCS, Chan AHY, Ganesan A. Thirty years of HDAC inhibitors: 2020 insight and hindsight. J Med Chem. 2020;63:12460–84.

    Article  CAS  PubMed  Google Scholar 

  3. Gupta R, Ambasta RK, Kumar P. Histone deacetylase in neuropathology. Adv Clin Chem. 2021;104:151–231. Elsevier; cited 2023 Mar 22. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0065242320301244

    Article  CAS  PubMed  Google Scholar 

  4. Uzdensky A, Demyanenko S. Histone acetylation and deacetylation in ischemic stroke. Neural Regen Res. 2021;16:1529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Demyanenko S, Uzdensky A. Profiling of signaling proteins in penumbra after focal photothrombotic infarct in the rat brain cortex. Mol Neurobiol. 2017;54:6839–56.

    Article  CAS  PubMed  Google Scholar 

  6. Uzdensky AB. Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins. Apoptosis. 2019;24:687–702.

    Article  CAS  PubMed  Google Scholar 

  7. Uzdensky A, Demyanenko S, Fedorenko G, Lapteva T, Fedorenko A. Protein profile and morphological alterations in penumbra after focal photothrombotic infarction in the rat cerebral cortex. Mol Neurobiol. 2017;54:4172–88.

    Article  CAS  PubMed  Google Scholar 

  8. Lee J-K, Park M-S, Kim Y-S, Moon K-S, Joo S-P, Kim T-S, et al. Photochemically induced cerebral ischemia in a mouse model. Surg Neurol. 2007;67:620–5.

    Article  PubMed  Google Scholar 

  9. Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006;224:213–32.

    Article  CAS  PubMed  Google Scholar 

  10. Manders EM, Stap J, Brakenhoff GJ, van Driel R, Aten JA. Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy. J Cell Sci. 1992;103:857–62.

    Article  CAS  PubMed  Google Scholar 

  11. Demyanenko SV, Dzreyan VA, Uzdensky AB. The expression and localization of histone acetyltransferases HAT1 and PCAF in neurons and astrocytes of the photothrombotic stroke-induced penumbra in the rat brain cortex. Mol Neurobiol. 2020;57:3219–27.

    Article  CAS  PubMed  Google Scholar 

  12. Alam MS. Proximity Ligation Assay (PLA). In: Del Valle L, editor. Immunohistochemistry and immunocytochemistry [Internet]. New York, NY: Springer US; 2022. p. 191–201. cited 2023 Mar 22, Available from: https://link.springer.com/10.1007/978-1-0716-1948-3_13.

    Chapter  Google Scholar 

  13. Bagchi S, Fredriksson R, Wallén-Mackenzie Å. In situ proximity ligation assay (PLA). In: Hnasko R, editor. . New York, NY: Springer New York; 2015. p. 149–59. cited 2023 Mar 22, ELISA [Internet]. Available from: https://link.springer.com/10.1007/978-1-4939-2742-5_15.

    Google Scholar 

  14. Mota M, Porrini V, Parrella E, Benarese M, Bellucci A, Rhein S, et al. Neuroprotective epi-drugs quench the inflammatory response and microglial/macrophage activation in a mouse model of permanent brain ischemia. J Neuroinflammation. 2020;17:361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Demyanenko SV, Nikul VV, Uzdensky AB. The neuroprotective effect of the HDAC2/3 inhibitor MI192 on the penumbra after photothrombotic stroke in the mouse brain. Mol Neurobiol. 2020;57:239–48.

    Article  CAS  PubMed  Google Scholar 

  16. Demyanenko S, Berezhnaya E, Neginskaya M, Rodkin S, Dzreyan V, Pitinova M. Сlass II histone deacetylases in the post-stroke recovery period—expression, cellular, and subcellular localization—promising targets for neuroprotection. J Cell Biochem. 2019;120:19590–609.

    Article  CAS  PubMed  Google Scholar 

  17. Ravindra KC, Selvi BR, Arif M, Reddy BAA, Thanuja GR, Agrawal S, et al. Inhibition of lysine acetyltransferase KAT3B/p300 activity by a naturally occurring hydroxynaphthoquinone, plumbagin. J Biol Chem. 2009;284:24453–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nakhate KT, Bharne AP, Verma VS, Aru DN, Kokare DM. Plumbagin ameliorates memory dysfunction in streptozotocin induced Alzheimer’s disease via activation of Nrf2/ARE pathway and inhibition of β-secretase. Biomed Pharmacother. 2018;101:379–90.

    Article  CAS  PubMed  Google Scholar 

  19. Modak R, Basha J, Bharathy N, Maity K, Mizar P, Bhat AV, et al. Probing p300/CBP associated factor (PCAF)-dependent pathways with a small molecule inhibitor. ACS Chem Biol. 2013;8:1311–23.

    Article  CAS  PubMed  Google Scholar 

  20. Siegel C, Li J, Liu F, Benashski SE, McCullough LD. miR-23a regulation of X-linked inhibitor of apoptosis (XIAP) contributes to sex differences in the response to cerebral ischemia. Proc Natl Acad Sci U S A. 2011;108:11662–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mitchnick KA, Creighton SD, Cloke JM, Wolter M, Zaika O, Christen B, et al. Dissociable roles for histone acetyltransferases p300 and PCAF in hippocampus and perirhinal cortex-mediated object memory: HATs and object memory. Genes Brain Behav. 2016;15:542–57.

    Article  CAS  PubMed  Google Scholar 

  22. Nijboer CH, Heijnen CJ, Groenendaal F, May MJ, van Bel F, Kavelaars A. A dual role of the NF-κB pathway in neonatal hypoxic-ischemic brain damage. Stroke. 2008;39:2578–86.

    Article  CAS  PubMed  Google Scholar 

  23. Nijboer CH, Heijnen CJ, van der Kooij MA, Zijlstra J, van Velthoven CTJ, Culmsee C, et al. Targeting the p53 pathway to protect the neonatal ischemic brain. Ann Neurol. 2011;70:255–64.

    Article  CAS  PubMed  Google Scholar 

  24. Bauer P, Hess B, Lindahl E. GROMACS 2022.3 Manual. 2022, cited 2022 Nov 13; Available from: https://zenodo.org/record/7037337

  25. Sykes SM, Stanek TJ, Frank A, Murphy ME, McMahon SB. Acetylation of the DNA binding domain regulates transcription-independent apoptosis by p53. J Biol Chem. 2009;284(30):20197–205. https://doi.org/10.1074/jbc.M109.026096

  26. Joerger AC, Fersht AR. The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem. 2016;85:375–404. https://doi.org/10.1146/annurev-biochem-060815-014710.

    Article  CAS  PubMed  Google Scholar 

  27. Deng W, Wang C, Zhang Y, Xu Y, Zhang S, Liu Z, et al. GPS-PAIL: prediction of lysine acetyltransferase-specific modification sites from protein sequences. Sci Rep. 2016;6:39787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eid M, Dzreyan V, Demyanenko S (2022) Sirtuins 1 and 2 in the Acute Period After Photothrombotic Stroke: Expression, Localization and Involvement in Apoptosis. Front Physiol. 13:782684. https://doi.org/10.3389/fphys.2022.782684

  29. Lei X, Zhao D, Li Y, Li X, Sun X, Du W, et al. Pifithrin-α enhances the survival of transplanted neural stem cells in stroke rats by inhibiting p53 nuclear translocation. CNS Neurosci Ther. 2013;19:109–16.

    Article  CAS  PubMed  Google Scholar 

  30. Murphy SP, Lee RJ, McClean ME, Pemberton HE, Uo T, Morrison RS, et al. MS-275, a Class I histone deacetylase inhibitor, protects the p53-deficient mouse against ischemic injury. J Neurochem. 2014;129:509–15.

    Article  CAS  PubMed  Google Scholar 

  31. Wang Z, Leng Y, Wang J, Liao H-M, Bergman J, Leeds P, et al. Tubastatin A, an HDAC6 inhibitor, alleviates stroke-induced brain infarction and functional deficits: potential roles of α-tubulin acetylation and FGF-21 up-regulation. Sci Rep. 2016;6:19626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Demyanenko SV, Dzreyan VA, Uzdensky AB. Overexpression of HDAC6, but not HDAC3 and HDAC4 in the penumbra after photothrombotic stroke in the rat cerebral cortex and the neuroprotective effects of α-phenyl tropolone, HPOB, and sodium valproate. Brain Res Bull. 2020;162:151–65.

    Article  CAS  PubMed  Google Scholar 

  33. Chen J-S, Wang H-K, Hsu C-Y, Su Y-T, Chen J-S, Liang C-L, et al. HDAC1 deregulation promotes neuronal loss and deficit of motor function in stroke pathogenesis. Sci Rep. 2021;11:16354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jordán J, Galindo MF, Prehn JHM, Weichselbaum RR, Beckett M, Ghadge GD, et al. p53 expression induces apoptosis in hippocampal pyramidal neuron cultures. J Neurosci. 1997;17:1397–405.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wu A, Ren T, Hu Q, Liu Y. Deltamethrin induces altered expression of P53, Bax and Bcl-2 in rat brain. Neurosci Lett. 2000;284:29–32.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu W-G. Regulation of p53 acetylation. Sci China Life Sci. 2017;60:321–3.

    Article  PubMed  Google Scholar 

  37. Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90:595–606.

    Article  CAS  PubMed  Google Scholar 

  38. Mrakovcic M, Bohner L, Hanisch M, Fröhlich LF. Epigenetic targeting of autophagy via HDAC inhibition in tumor cells: role of p53. IJMS. 2018;19:3952.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Knights CD, Catania J, Giovanni SD, Muratoglu S, Perez R, Swartzbeck A, et al. Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol. 2006;173:533–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Terui T, Murakami K, Takimoto R, Takahashi M, Takada K, Murakami T, et al. Induction of PIG3 and NOXA through acetylation of p53 at 320 and 373 lysine residues as a mechanism for apoptotic cell death by histone deacetylase inhibitors. Cancer Res. 2003;63:8948–54.

    CAS  PubMed  Google Scholar 

  41. Demyanenko S, Dzreyan V, Sharifulina S. Histone deacetylases and their isoform-specific inhibitors in ischemic stroke. Biomedicines. 2021;9:1445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Raz L, Zhang Q, Han D, Dong Y, De Sevilla L, Brann DW. Acetylation of the pro-apoptotic factor, p53 in the hippocampus following cerebral ischemia and modulation by estrogen. PLoS One. 2011;6:e27039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Toledo F, Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer. 2006;6:909–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (Grant number 21-15-00188).

Author information

Authors and Affiliations

Authors

Contributions

Guzenko V.V.—surgery, Western Blot analysis, Co-IP, Duoling PLA, immunohistochemistry; Bachurin S.S. —MDS; Khaitin A.M.—statistical processing, figures, writing; Dzreyan V.A.—Western Blot Analysis, Co-IP, immunoprecipitation, Duolink PLA; Kalyuzhnaya Y.N.—surgery, immunohistochemistry; He Bin—conceptualization, MDS, writing; Demyanenko S.V.—surgery, immunohistochemistry, supervision, conceptualization, funding acquisition, writing.

Corresponding author

Correspondence to S.V. Demyanenko.

Ethics declarations

Ethics Approval

The study has followed all the applicable standards, including international, national, and institutional guidelines for keeping and using laboratory animals. All experimental procedures were carried out in accordance with the European Union guidelines 86/609/ЕЕС for the use of experimental animals and local legislation for ethics of experiments on animals. The animal protocols were evaluated and approved by the Animal Care and Use Committee of the Southern Federal University (Approval No 3-14/2014; 08/2016 and 02/2022).

Competing Interests

There is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 1.06 mb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzenko, V., Bachurin, S., Khaitin, A. et al. Acetylation of p53 in the Cerebral Cortex after Photothrombotic Stroke. Transl. Stroke Res. (2023). https://doi.org/10.1007/s12975-023-01183-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12975-023-01183-z

Keywords

Navigation